

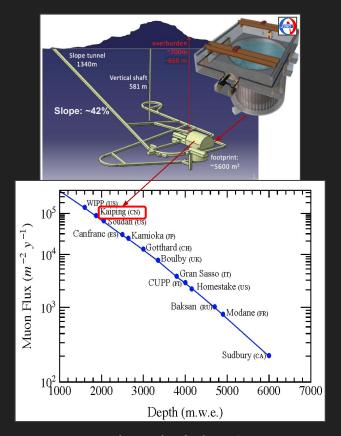
THE JUNO DETECTOR: DESIGN CONCEPT AND STATUS

ALESSANDRA CARLOTTA RE for the JUNO collaboration

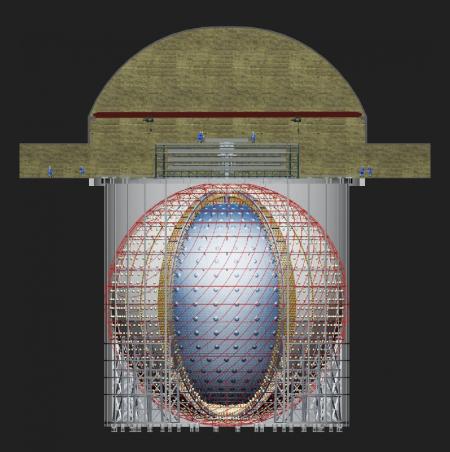
Università degli Studi e INFN - Milano alessandra.re@mi.infn.it

ICHEP 2022 | July 8, 2022 Alessandra Carlotta Re

Why to perform neutrino physics underground?

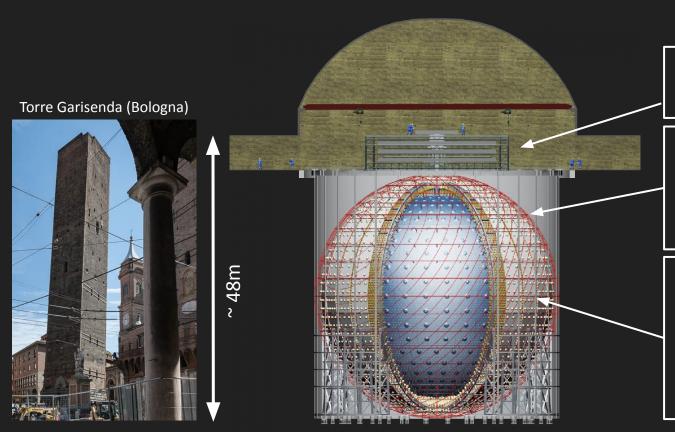

The JUNO experimental hall is located below an average rock cover of about 650 m: the shielding capacity against cosmic rays is about 1800 m.w.e.

Expected muon flux in JUNO:


$$\Phi(\mu) \sim 0.004 \ \mu/\text{m}^2/s \to 10^5 \ \mu/\text{m}^2/y$$

Prog. Part. and Nucl. Phys 123 (2022) 103927

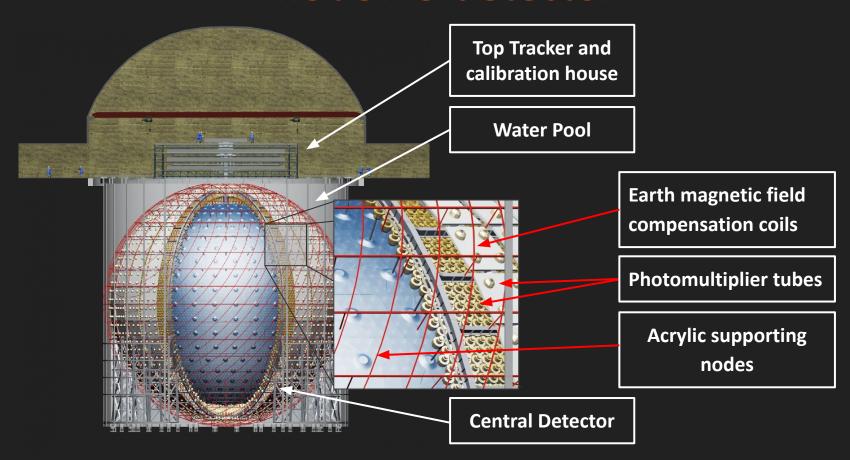
To fulfill its rich physics program (previous talk: "JUNO's physics prospects" by Jie Cheng) JUNO needs to reach the target radiopurity from its very beginning!



The JUNO detector

ICHEP 2022 | July 8, 2022 Alessandra Carlotta Re

The JUNO detector

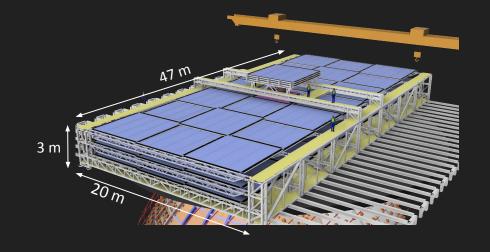

Top Tracker (TT) and calibration house

Water Pool (WP)
a.k.a.
Water Cherenkov
Detector

Central Detector (CD)

Acrylic spherical vessel filled with 20 kton of LAB based liquid scintillator

The JUNO detector

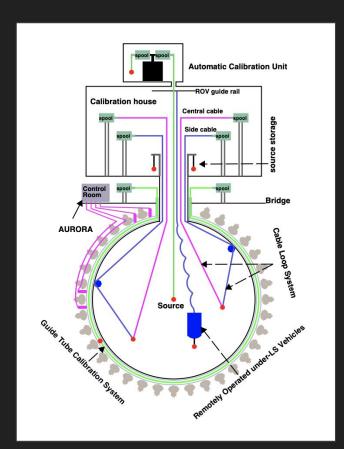


The Top Tracker

Goals:

- 1. Precise muon tracking
- Study of the cosmogenic background.

The TT will cover 1/3 of all atmospheric muons passing through the CD (60% top of the WP) \rightarrow provide well μ reconstructed samples for other systems.



- Detection medium: 3 layers of plastic scintillator.
 - Environmentally friendly! We refurbished the plastic scintillators from OPERA Target Tracker.

Status:

All plastic scintillator modules already in China. New supporting structure designed. Finishing up electronics development/firmware.

The Calibration house

<u>Motivation</u>: to control energy scale, to study detector response non-uniformity and energy non-linearity

<u>How</u>: different scan systems


1D: Automatic Calibration Unit

2D: Cable Loop System, Guide Tube Calibration System

3D: Remotely Operated Vehicle

<u>With</u>: Several radioactive sources (γ , e⁺, n) @ different energies (from ~0.5 MeV to ~8 MeV)

The Water Cherenkov Detector

The VETO System of JUNO consists in the Top Tracker + Water Cherenkov Detector. See poster by Eric Baussan (P103)

Main features:

- 35 kton ultrapure water
- 2400 20" PMTs
- μ detection eff. > 99.5%
- Passive shield for natural radioactivity

Requirements:

- 222 Rn < 10 mBq/m³
- Stable temperature:
 (21 ± 1) °C
- Attenuation length: ~35 m

The Central Detector - Support Structure (SS)

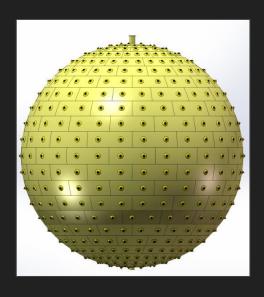
Geometry: 40.1 m diameter

The assembly of the SS is finished and we are now starting to install the acrylic sphere.

The acrylic sphere will be supported by 590 connecting bars

Assembly precision: < 3 mm for each grid!

The Support Structure assembly



Alessandra Carlotta Re

The Central Detector - Acrylic Sphere

Main features:

- Geometry: 35.4 m diameter
- Structure: 265 Acrylic plates
- Thickness: (124 ± 4) mm
- Radiopurity: U/Th/K < 1 ppt
- Light transparency > 96% (in LS, after installation).

The plates (up to 8m x 3m) are pre-assembled at the production factory (Donchamp).

The Central Detector - Acrylic Sphere

Each acrylic plate has been:

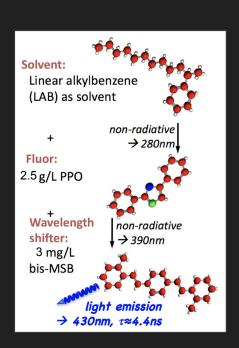
- 1. polished
- 2. cleaned
- 3. PE protective film added.

The film will be removed before the Liquid Scintillator filling.

The Central Detector - PhotoMultipliers

Main features:

- <u>CD:</u> 17612 20" PMTs (γ det. efficiency ~ 30%) $\left. \begin{array}{c} \sim 43200 \text{ PMTs} \\ \sim 43200 \end{array} \right.$
- Assembly precision: < 1 mm
- Clearance between PMTs: 3 mm
- Largest PMT coverage to date: <u>78% active surface</u>


All PMTs were produced, tested, and instrumented with waterproof potting.

Underwater electronics to improve signal-to-noise ratio: assembly ongoing.

→ JUNO will profit of an unprecedented light level for a PMT-based detector: ~1665 pe/MeV expected.

For more informations about PMTs and electronics, see posters by Vanessa Cerrone (P106), Riccardo Triozzi (P109), and Zhonghua Qin (INDICO ref. #853).

The Central Detector - Scintillator

Main features:

Solvent: Linear Alkyl Benzene (LAB)

Doping: 2.5 g/L PPO (fluor)

+ 3 mg/L bis-MSB (wavelength shifter).

- Attenuation length: > 20 m @ 430 nm (measured)
- Radiopurity: highly radiopure LS required

10⁻¹⁵ g/g in U/Th for reactor antineutrinos physics;

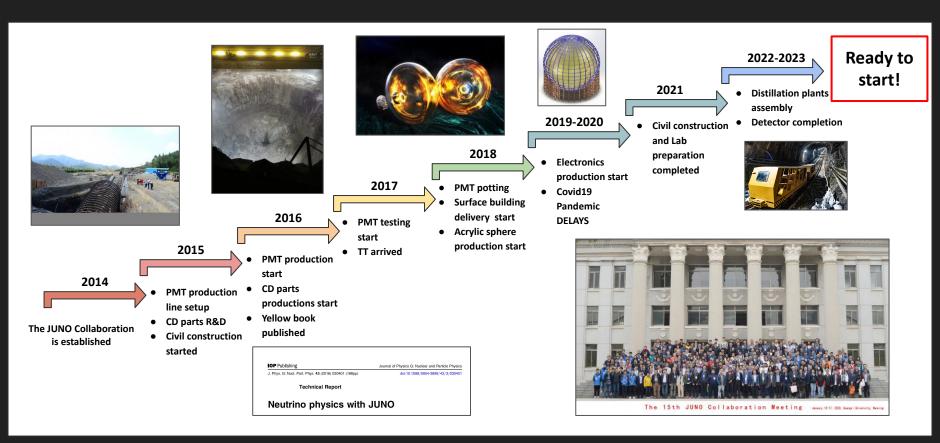
10⁻¹⁷ g/g in U/Th for solar neutrinos physics;

Scintillator light yield: ~10⁴ phot/MeV.

Further details on the JUNO scintillator characterization can be found in the poster by Federico Ferraro (P110).

Alessandra Carlotta Re

About the scintillator - further details


The JUNO experiment: a recap

JUNO is going to be the largest ever liquid scintillator (20 kton) experiment, equipped with ~43200 PMTs to collect scintillation light. The detector construction will be completed by the end of 2023.

Key features:

- 1. <u>Large mass</u> of ultrapure liquid scintillator.
- 2. <u>Low background levels</u>:
 - Cosmic ray natural shielding of ~ 1800 m.w.e.;
 - Material screening;
 - Passive shielding;
- \rightarrow Internal radiopurity \rightarrow background suppression;
- Careful installation procedure & clean environment.
- 3. <u>Very high energy resolution</u>:
 - Scintillator light yield (~10⁴ phot/MeV);
 - PMTs coverage (78%);
 - High transparency of the liquid scintillator;
 - Comprehensive calibration program.

The JUNO timeline so far....

July 2022: we are almost ready!

The JUNO experiment @ ICHEP 2022: detector-related posters

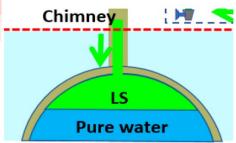
- [P103] Eric Baussan: The Veto System of the JUNO Experiment
- [P106] Vanessa Cerrone: Characterization of JUNO Large-PMT electronics in a complete small scale test setup
- [P110] Federico Ferraro: Improved measurements of timing and optical properties of the JUNO liquid scintillator with SHELDON
- [P109] Riccardo Triozzi: Mass testing of Large-PMT electronics at Kunshan for the JUNO experiment
- [#853] Zhonghua Qin: Overall status of 20-inch PMT Instrumentation for the JUNO experiment

23

ICHEP 2022 | July 8, 2022 Alessandra Carlotta Re

About the scintillator - further details

Reduced by 15% compared to the design. Ref: JHEP 11 (2021) 102

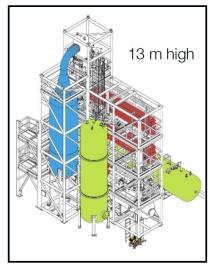

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt -> 1 ppt
Metal in node	0.087	+1.0	Copper -> SS
PMT glass	0.33	+2.47	Schott -> NNVT/Ham
Rock	0.98	-0.85	3.2 m -> 4 m
Radon in water	1.31	-1.25	200 mBq/m ³ -> 10 mBq/m ³
Other	0	+0.52	Add PMT readout, calibration sys
Total	8.5	-1.3	

Radiopurity control on raw material:

- ✓ Careful material screening
- ✓ Meticulous Monte Carlo Simulation
- ✓ Accurate detector production handling

Liquid Scintillator Filling

- ✓ Recirculation is impossible at JUNO due to its large size
- → Target radiopurity need to be obtained from the beginning
- ✓ Strategies:
- 1. Leakage (single component < 10⁻⁶ mbar·L/s)
- 2. Cleaning vessel before filling
- 3. Clean environment
- 4. Water/LS filling

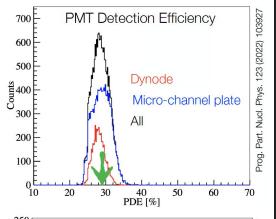


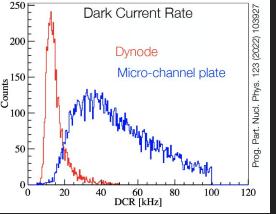
About the scintillator - further details(3)

Marco Grassi
Talk @
LaThuile 2022

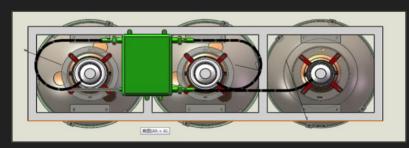
Radioactive contaminants yield background events → Purification

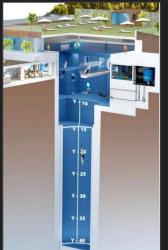
1) 102	Requirements	238U	²³² Th	²²⁶ Ra	40 K	²¹⁰ Pb(²²² Rn)	⁸⁵ Kr / ³⁹ Ar
11 (202	Reactor physics	10 ⁻¹⁵ g/g	10 ⁻¹⁵ g/g		10 ⁻¹⁶ g/g	10 ⁻²² g/g	
JHEP	Solar physics			5·10-24 g/g	10 ⁻¹⁸ g/g	10 ⁻²⁴ g/g	1μBq/m³

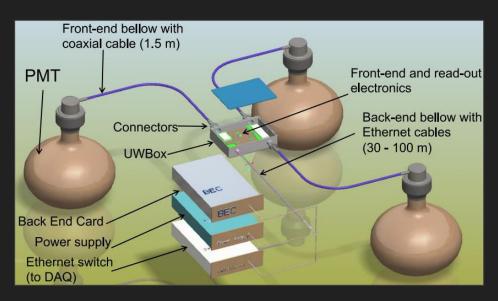

About the PhotoMultipliers - further details


Marco Grassi

Talk @ LaThuile 2022 20-inch (large) photomultiplier tubes (PMTs)

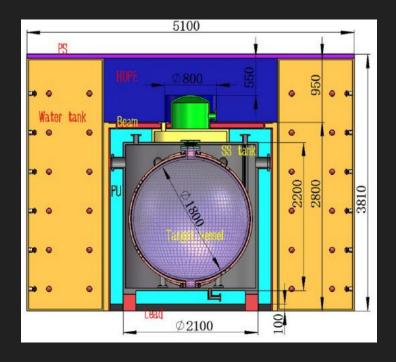



Quantity	~5000	~15000		
Manufacturer	Hamamatsu (JP)	NNTV (CN)		
Photocatode	Upper hemisphere	Both hemispheres		
Charge Collection	Dynode	Micro-channel plate		
Transit Time Spread	σ 1.2 ns FWHM 2.8 ns	σ 9.1 ns FWHM 21.5 ns		


The JUNO Central Detector electronics

20-inch PMTs connected to one underwater box128 3-inch PMTs connected to one underwater boxElectronics assembly is currently ongoing

ICHEP 2022 | July 8, 2022 Alessandra Carlotta Re


TAO (Taishan Antineutrino Observatory)

High resolution anti-neutrino detector, located at 30 m from one of the Taishan reactor cores

2.6 ton Gd-doped LS detector at 30 m from a Taishan reactor core (4.6 GW)

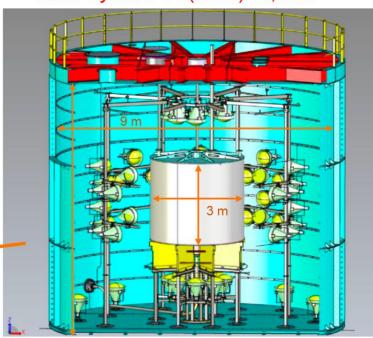
- >95% photo-coverage
- Measure the reactor antineutrino spectrum at % level → model-independent reference spectrum for JUNO
- Benchmark measurement for the nuclear database
- Effective light yield: 4500 p.e./MeV → energy resolution ~ 1.8%/√E (MeV)

TAO CDR: https://doi.org/10.48550/arXiv.2005.08745

OSIRIS

(Online Scintillator Internal Radioactivity Investigation System)

A 20-t detector to monitor radiopurity of LS before and during filling to the central detector


- ✓ Few days: U/Th (Bi-Po) ~ 1×10^{-15} g/g (reactor baseline case)
- ✓ 2~3 weeks: U/Th (Bi-Po) ~ 1 × 10^{-17} g/g (solar ideal case)
- ✓ Other radiopurity can also be measured: ¹⁴C, ²¹⁰Po and ⁸⁵Kr.

Expect to start commissioning in July.

Eur. Phys. J. C 81 (2021) 11, 973

