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NEXT at the Ton Scale

• Ongoing advanced readout R&D:
• High speed cameras for optical tracking
• Metalenses for enhanced VUV light collection
• Low radioactivity MCP-PMTs for energy plane

• Multi-module system with first module at                     Laboratorio  
Subterráneo de Canfranc 

• Siting of subsequent modules TBD (likely a deeper site).

• Expected sensitivity >1027 yr to cover inverted ordering

• Use of gas additives (eg, 4He) to reduce diffusion

• Potential for 3He doping to reduce cosmogenic 137Xe backgrounds

• Baseline concept:

• Symmetric TPC with central cathode
• Dense SiPM plane readout
• Optical fibers around barrel for energy measurement
• Estimated background 0.09 to 0.27 ct [ton yr ROI]-1
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NEXT with Barium Tagging

4

Single molecule fluorescent imaging employed to detect Ba2+ produced in 
double beta decay.

J.Phys.Conf.Ser. 650 (2015) 1, 012002; JINST 11 (2016) 12, P12011;  
Phys. Rev. Lett. 120 (2018) 13, 132504. e-
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136Ba++
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• Techniques for ion production and collection

❖ Ba salt and Ba metal evaporation

❖ RF Carpets arXiv:2109.05902
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NEXT with Barium Tagging

Realization of efficient, scalable barium tagging  
inHPXeGas could enable truly a background-free 

 tonne-scale technology.

4

Single molecule fluorescent imaging employed to detect Ba2+ produced in 
double beta decay.

J.Phys.Conf.Ser. 650 (2015) 1, 012002; JINST 11 (2016) 12, P12011;  
Phys. Rev. Lett. 120 (2018) 13, 132504.

• Chemosensing molecules development: 

‣ Synthesis

‣ On-surface immobilisation

• Techniques for ion production and collection

❖ Ba salt and Ba metal evaporation

❖ RF Carpets arXiv:2109.05902

• Detection of fluorescence in dry medium

➡Prototyping: surface-science techniques
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Turn-on approach Bicolor approach

Fluorescence Emission Spectra

• First generations of NEXT chemosensors switch 
fluorescence from off to on upon binding Ba2+ ion

• Crown ether receptor groups tuned computationally 
and experimentally for barium selectivity.

• Optimal fluorescent groups surveyed and selected 
based on technical needs of single molecule 
microscopy (quantum yield, fluorescent 
backgrounds in glass and optics).

• Single molecule imaging of barium ions in 
solventless conditions was demonstrated.

• Barium-responsive self-assembled organic layers  
grown to develop off-on SMFI sensors.
Sci.Rep. 9 (2019) 1, 15097;

• Binding with Ba2+ ion produces a torsion in this 
molecule and thereby modifies the emission 
color.

• The phenyl ring and a N-atom also interact with 
the ion.

• This shift is maintained in a dry environment 
(silica pellets)
Nature 583 (2020) 7814, 48–54.

• Aim for larger color shift in future molecule 
generations 



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

136Ba++

HVG



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

136Ba++

e-
e-e-e-

e-

1. The Energy-Tracking Device measures the energy  of the 

electrons and reconstructs the barycentre of the track. HVG



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

136Ba++

e-
e-e-e-

e-

1. The Energy-Tracking Device measures the energy  of the 

electrons and reconstructs the barycentre of the track. HVG



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

e-
e-e-e-

e-

1. The Energy-Tracking Device measures the energy  of the 

electrons and reconstructs the barycentre of the track. 

2. This triggers the sensor while  drifts towards the 

cathode where a ML of organic molecules catches it.

Ba2+

3. These molecules work as Fluorescent Bicolor Indicators 

(FBI), as its light emission shifts upon chelation with Ba2+. 

This is the signal of Ba2+ detection.

HVG



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

e-
e-e-e-

e-

Laser

CCD

1. The Energy-Tracking Device measures the energy  of the 

electrons and reconstructs the barycentre of the track. 

2. This triggers the sensor while  drifts towards the 

cathode where a ML of organic molecules catches it.

Ba2+

3. These molecules work as Fluorescent Bicolor Indicators 

(FBI), as its light emission shifts upon chelation with Ba2+. 

This is the signal of Ba2+ detection.

HVG



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

Laser

CCD

1. The Energy-Tracking Device measures the energy  of the 

electrons and reconstructs the barycentre of the track. 

2. This triggers the sensor while  drifts towards the 

cathode where a ML of organic molecules catches it.

Ba2+

3. These molecules work as Fluorescent Bicolor Indicators 

(FBI), as its light emission shifts upon chelation with Ba2+. 

This is the signal of Ba2+ detection.

4. The sensor is scanned repeatedly.

5. Together with the electron track we obtain a delayed 

coincidence signal.

HVG



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

Laser

CCD

1. The Energy-Tracking Device measures the energy  of the 

electrons and reconstructs the barycentre of the track. 

2. This triggers the sensor while  drifts towards the 

cathode where a ML of organic molecules catches it.

Ba2+

3. These molecules work as Fluorescent Bicolor Indicators 

(FBI), as its light emission shifts upon chelation with Ba2+. 

This is the signal of Ba2+ detection.

4. The sensor is scanned repeatedly.

5. Together with the electron track we obtain a delayed 

coincidence signal.
N
N

OO

O

O O

N

NH

O

N
N

OO

O

O O

N

NH

O

N
N

OO

O

O O

N

NH

O

N
N

OO

O

O O

N

NH

O

HVG



HVC

e-

e-

Barium Tagging: SABAT concept

6

Tracking 
plane

SiPMs

CathodeGateAnode 
(ground)

Pressurized vessel 
10-15 bar GXe

EL 
region

Drift region

Barium 
Tagging

Laser

CCD

1. The Energy-Tracking Device measures the energy  of the 

electrons and reconstructs the barycentre of the track. 

2. This triggers the sensor while  drifts towards the 

cathode where a ML of organic molecules catches it.

Ba2+

3. These molecules work as Fluorescent Bicolor Indicators 

(FBI), as its light emission shifts upon chelation with Ba2+. 

This is the signal of Ba2+ detection.

4. The sensor is scanned repeatedly.

5. Together with the electron track we obtain a delayed 

coincidence signal.

HVG

N
N

OO

O

O O

N

NH

O

N
N

OO

O

O O

N

NH

O

N
N

OO

O

O O

N

NH

O

NH

O



x

HVC

e-

e-

Barium Tagging: CRAB concept

7

Direct VUV 
tracking

Cathode 
+ RF carpet

GateAnode 
(ground)

EL 
region

Drift region

Barium 
Tagging

136Ba++

HVG

CCD

CCD

Pressurized vessel 
10-15 bar GXe

CCD

CCD

HVC

TPX 
Cam

TPX 
Cam

Cathode 
+ RF carpet



x

HVC

Barium Tagging: CRAB concept

7

Direct VUV 
tracking

Cathode 
+ RF carpet

GateAnode 
(ground)

EL 
region

Drift region

Barium 
Tagging

136Ba++

e-
e-e-e-

e-

HVG

CCD

CCD

Pressurized vessel 
10-15 bar GXe

CCD

CCD

HVC

TPX 
Cam

TPX 
Cam

Cathode 
+ RF carpet

1. The e- track is detected by a TimePix 

camera with an intensifier for single VUV 

photon detection.



+ - + - + - + -+ - + - + - + -+ - + - + - + -

RF Carpet ion transport in Xenon gas

SIMION simulation

x

HVC

Barium Tagging: CRAB concept

7

Direct VUV 
tracking

Cathode 
+ RF carpet

GateAnode 
(ground)

EL 
region

Drift region

Barium 
Tagging

HVG

CCD

CCD

Pressurized vessel 
10-15 bar GXe

CCD

CCD

HVC

TPX 
Cam

TPX 
Cam

Cathode 
+ RF carpet

1. The e- track is detected by a TimePix 

camera with an intensifier for single VUV 

photon detection.

2.  drifts towards the cathode where it 
is concentrated by RF carpets

Ba2+



+ - + - + - + -+ - + - + - + -+ - + - + - + -

RF Carpet ion transport in Xenon gas

SIMION simulation

x

HVC

Barium Tagging: CRAB concept

7

Direct VUV 
tracking

Cathode 
+ RF carpet

GateAnode 
(ground)

EL 
region

Drift region

Barium 
Tagging

HVG

CCD

CCD

Pressurized vessel 
10-15 bar GXe

CCD

CCD

HVC

TPX 
Cam

TPX 
Cam

Cathode 
+ RF carpet

1. The e- track is detected by a TimePix 

camera with an intensifier for single VUV 

photon detection.

2.  drifts towards the cathode where it 
is concentrated by RF carpets

Ba2+

3. Full cathode collects  ions  
but only small regions are occupied with 

switch-on sensors and scanned by 

microscopes

Ba2+



+ - + - + - + -+ - + - + - + -+ - + - + - + -

RF Carpet ion transport in Xenon gas

SIMION simulation

x

HVC

Barium Tagging: CRAB concept

7

Direct VUV 
tracking

Cathode 
+ RF carpet

GateAnode 
(ground)

EL 
region

Drift region

Barium 
Tagging

HVG

CCD

CCD

Pressurized vessel 
10-15 bar GXe

CCD

CCD

HVC

TPX 
Cam

TPX 
Cam

Cathode 
+ RF carpet

1. The e- track is detected by a TimePix 

camera with an intensifier for single VUV 

photon detection.

2.  drifts towards the cathode where it 
is concentrated by RF carpets

Ba2+

3. Full cathode collects  ions  
but only small regions are occupied with 

switch-on sensors and scanned by 

microscopes

Ba2+

4. The molecule is imaged until it photo-

bleaches in situ 

 (~30 sec for 18c6-nap molecule).



+ - + - + - + -+ - + - + - + -+ - + - + - + -

RF Carpet ion transport in Xenon gas

SIMION simulation

x

HVC

Barium Tagging: CRAB concept

7

Direct VUV 
tracking

Cathode 
+ RF carpet

GateAnode 
(ground)

EL 
region

Drift region

Barium 
Tagging

HVG

CCD

CCD

Pressurized vessel 
10-15 bar GXe

CCD

CCD

HVC

TPX 
Cam

TPX 
Cam

Cathode 
+ RF carpet

1. The e- track is detected by a TimePix 

camera with an intensifier for single VUV 

photon detection.

2.  drifts towards the cathode where it 
is concentrated by RF carpets

Ba2+

3. Full cathode collects  ions  
but only small regions are occupied with 

switch-on sensors and scanned by 

microscopes

Ba2+

4. The molecule is imaged until it photo-

bleaches in situ 

 (~30 sec for 18c6-nap molecule).

5. Together with the electron track we 

obtain a delayed coincidence signal.
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• Single molecule microscopy over large surface within high pressure TPC 
volume  is a technically challenging prospect.

• NEXT prototypes demonstrate mm2 area scan within high pressure xenon gas.

• Single barium ions are resolved at sensor surface using NEXT crown ether 
chemosensors over full scan area.

• Device now being deployed for tests of in-vessel capture+fluorescence at self-
assembled molecular monolayers

ACS Sens. (2021) 6, 1, 192–202; arXiv:2201.09099; 
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Images taken in 
10 bar Xe gas with 
external EMCCD 

camera and lasers

Scan surface is 
~15cm into vessel 

volume

Single barium ions 
clearly resolved.

Dry single barium ion sensing demonstrated via single-step photobleach
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1. We performed further measurements evaporating FBI molecules and BaCl2 on 
a Au (111) surface in UHV.

2. Characterisation by XPS and STM-STS before and after chelation with barium 
was performed in-situ.

hν

O 1s
Paper in revision stage at  

Nature Comm.
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‣ This result agrees with the only other study of crown-

ether chelation in UHV [3].

‣ The same effect was observed for copper and indium tin 

oxide (ITO) substrates.

O 1s

(X-ray Photoemission Spectroscopy)

‣ We evaporated progressively 

increasing amounts of BaCl2.

‣ As the molecules captured Ba++, 

the  O 1s peak shifted toward lower 

binding energy (BE).

‣Five O atoms are coordinated with 

each ion.

Ba 3d5/2

Chemical proof of Ba2+ chelation by 
fluorescent indicators in UHV
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FBI
3.0 eV

(413 nm)

dI
/d
V

Model: Sub Monolayer sensor

1.FBI molecules were deposited on Au (111) in sub-monolayer regime.

2.Single molecules were imaged with STM.

3.Then BaCl2 was deposited on top.

4. Clear topological change is visible, indicating  coordination with the ion.

5. The HOMO-LUMO gap shifts in the same trend as the fluorescent absorption.

6.High resolution images of the fluorophore moiety were recorded as well.

Au (111)

N
N
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▪ High-Pressure Single Molecule microscopy is also being developed.

▪ This work: deposition of controlled molecular samples (up to the level of 1 ML) 
in metallic surfaces. Chelation takes place in vacuum with Ba++.

▪ The characteristic conformational change upon chelation with Ba++ was 
confirmed with STM-STS and is consistent with theoretical calculation (paper in 
preparation).

▪ Realization of efficient, scalable barium tagging  
could enable a truly background-free technology!

Laser

CCD



Thank you!

Questions and comments are welcome


