The status of the HOLMES experiment

 $\bullet \bullet \bullet$

Luca Origo on the behalf of the collaboration - 7th july 2022

Talk outline

- 1. HOLMES project
- 2. <u>TES technology</u>
- 3. <u>TES fabrication</u>
- 4. <u>TES readout</u>
- 5. <u>Pulse analysis</u>
- 6. <u>Parameter estimation</u>
- 7. <u>Pile-up rejection</u>
- 8. HOLMES future

HOLMES project

- <u>direct</u> & <u>calorimetric</u> measurement of the ¹⁶³Ho electron capture
- the v_e energy is the only one undetected \rightarrow purely kinematic assessment of m_v

163
Ho + e⁻ \rightarrow 163 Dy^(*) + v

a lot of ingredients:

- + very sensitive microcalorimeters (**TESs**)
- + very low temperature (<u>cryostat ~20mK</u>)
- + smart readout (microwaves multiplexing)
- ... detector fabrication, holmium implantation, discrimination algorithms, parameter estimation

ROI lineshape(
$$E_c$$
) $\propto \sqrt{(Q-E_c)^2 - m_v^2}$

TES technology

- + FWHM(@ 6 keV) ~ 4 eV
- + $\tau_{\rm R} \sim 20 \ \mu s$ and $\tau_{\rm D} \sim 300 \ \mu s$
- + suitable for **multiplexing**

With our pulse analysis:

+
$$\tau_{\text{RES}} \sim 1.5 \ \mu\text{s}$$

 \rightarrow lower than $t_{\text{sample}} \sim 2 \ \mu\text{s}$

Transition Edge Sensors:

superconducting film coupled to an absorber
 → low T variation leads to high R jumps

TES fabrication

Si SiO₂ Si₂N₃ Au Cu Mo ¹⁶³Ho absorber sensor 2μm 0.5μm 0,15μm 250μm

- 1. Ho implantation
- 2. Au deposition
- 3. photoresist lift-off
- 4. membrane release

TES fabrication

Target chamber at the end of an electromagnetic mass selector ¹⁶³Ho atoms are guided through. Implanter set up @ Genova.

- 1. <u>Ho implantation</u>
- 2. <u>Au deposition</u>
- 3. photoresist lift-off
- 4. membrane release

TES fabrication

Target chamber at the end of an electromagnetic mass selector ¹⁶³Ho atoms are guided through. Implanter set up @ Genova.

- 2. Au deposition
- 3. <u>photoresist lift-off</u>
- 4. <u>membrane release</u>

Tested @ Milano-Bicocca. Protection film removal and silicon substrate etching to improve thermal coupling to the bath.

etched back of TESs

TES readout

It is possible to readout a TES by means of a microwave resonator with a unique f_{res} . \rightarrow parallel readout is accessible using N resonators

for N detectors, coupled to the same feedline.

$$\Delta E \rightarrow \Delta I_{\text{TES}} \rightarrow \Delta f_{\text{res}} \rightarrow \Delta \phi$$

An energy deposition is converted into resonant frequency shift and then into a **<u>phase difference</u> <u>of the traveling signal</u>**.

Pulse analysis: data handling

Events collected as arrays in **HDF5 files** and handled with python **matricial operations**.

Each detector can reconstruct the ¹⁶³Ho EC-spectrum independently.

Pulse analysis: (first level) data reduction

ev x n _{pts}		pt 1	pt 2			pt n-1	pt n	t _o
	ev 1	-	-	-	-	-	-	-
	ev 2	-	-	-	-	-	-	-
		-	-	-	-	-	-	-
	ev N	-	-	-	-	-	-	-

Data compression by means of parameterization \rightarrow saving **amplitude**, **baseline**, **characteristic times**

Events <u>tagged</u> as 'good' or '<u>bad'</u> \rightarrow multiple(1), empty(2), strange(3), bad baseline(4)

Pulse analysis: energy estimation

Pulse analysis: energy estimation

Max signal/noise under assumptions:

- 1. ergodic noise
- 2. well-chosen sampling window
- 3. $\mathbf{s}[\mathbf{i}] = \mathbf{K}(\mathbf{E}) \cdot \mathbf{m}[\mathbf{i}] + \mathbf{n}[\mathbf{i}]$

Pass the signals through the optimum filter

Computing a reasonable arrival time

Correcting the drift of the detector gain

Pulse analysis: energy estimation

What is the true arrival time of our signals?

 $\Delta t = 0$ sample unit

 $\Delta t = 0.5$ sample unit

 2×10^{5}

Discrete sampling \rightarrow <u>uncertainty on the rise profile</u> \rightarrow amplitude smearing

(corrected by smoothing pulses with a moving average)

Pass the signals through the optimum filter

Computing a reasonable arrival time

Correcting the drift of the detector gain

Pulse analysis: energy estimation

TES amplitude response depends on the baseline level

Bath temperature/Voltage bias oscillations \rightarrow Working point variation \rightarrow Observed drift in the data

(corrected by fitting with a linear regression)

Pass the signals through the optimum filter

Computing a reasonable arrival time

Correcting the drift of the detector gain

Drift correction

0.5

Timestamps

1e11

1.5

1e11

chain : 1 chain : 2 chain : 3

chain : 4 chain : 5 chain : 6

4000

3000

Parameter estimation

Looking forward to the ¹⁶³Ho spectral fit, a **bayesian** tool for the parameter estimation is under development.

Knowing:

- the **<u>likelihood</u>** of the model
- the parameters **priors**

Stan probes the parameter space with the <u>Markov Chain Monte Carlo technique</u>.

Once reached a stationary sequence, each iteration is a sample from the **posterior**.

vs Frequentist:

- same performances in simple problems
- natural involvement of systematic errors
- priors ambiguity
- parameter's 'true value' not fixed
 - \rightarrow distribution to sample from

Pile-up rejection

HOLMES background sources:

- <u>cosmic rays</u>, <u>natural radioactivity</u>, ^{166m}<u>Ho β -decay</u> \rightarrow negligible/well known contributions
- <u>unresolved pile-up</u> (typically on the rise)
 → complex algorithms required

(assuming ~100Bq/TES)

Pile-up rejection

HOLMES background sources:

- <u>cosmic rays</u>, <u>natural radioactivity</u>, ^{166m}<u>Ho β -decay</u> \rightarrow negligible/well known contributions
- <u>unresolved pile-up</u> (typically on the rise)
 → complex algorithms required ———

(assuming ~100Bq/TES)

DSVP:

- + Discriminating pulses **looking at the average** data 'morphology'
- + a reduced parameter space is created using a data-set with $N_{good} >> N_{bad}$

<u>Wiener filter:</u>

- + The time profile of the energy deposition is recovered
 - \rightarrow detector response deconvolved
- + Discrimination with shape parameters

Pile-up rejection

HOLMES background sources:

- <u>cosmic rays</u>, <u>natural radioactivity</u>, ^{166m}<u>Ho β -decay</u> \rightarrow negligible/well known contributions
- <u>unresolved pile-up</u> (typically on the rise) \rightarrow complex algorithms required

(assuming ~100Bq/TES)

DSVP:

- Discriminating pulses <u>looking at the average</u> <u>data 'morphology'</u>
- + a reduced parameter space is created using a data-set with $N_{good} >> N_{bad}$

<u>Wiener filter:</u>

- + The time profile of the energy
 <u>deposition</u> is recovered
 → detector response deconvolved
- + Discrimination with shape parameters

according to simulations:

their combination would provide a time resolution of 1.5 μs

(**pile-up fraction** on the entire EC spectrum **down to 10⁻⁴**)

HOLMES future

13/13

Luca Origo

Looking forward at a **low-dose measurement**:

 $\rightarrow \text{ reliable readout } \checkmark \text{ (of 32 TESs)} \\ \rightarrow \text{ stable measurements } \checkmark \text{ (of 32 TESs)} \\ \rightarrow \text{ well-tested algorithms } \checkmark \\ \rightarrow \text{ detector fabrication } \checkmark \\ \underline{\text{but}} : {}^{163}\text{Ho implantation } \bigstar$


```
2022 \rightarrow \rightarrow 2023
```

Soon, we will:

- test new Holmium-targets
- find the best operation-mode for the implantation system
- settle a working procedure to handle the radioactive source

Thanks for the attention!

<u>luca.origo@mib.infn.it</u>

Backup slides

 $\bullet \bullet \bullet$

TES fabrication: substrate etching

• how we receive the chip:

• after implantation/deposition and photoresist lift-off:

2 techniques:

- KOH \rightarrow more space required between TESs, tested succesfully @ MiB
- Deep Reactive Ion Etching (DRIE)
 → perpendicular etching, not properly tuned yet

TES fabrication: Ho implantation

TES readout: 1/3

Each TES is coupled to a <u>rf-**SQUID**</u>

- superconductive ring interrupted by a Josephson (insulant) junction
- sensitive magnetometer
- non-linear response

a <u>sawtooth signal</u> is used to linearize the SQUID response: $\mathbf{f}_{sawtooth} = \mathbf{f}_{sample}$

TES readout: 2/3

Each TES is coupled with a rf-**SQUID**

- superconductive ring interrupted by a Josephson (insulant) junction
- sensitive magnetometer
- non-linear response

a sawtooth signal is used to linearize the SQUID response: **f**_{sawtooth} **= f**_{sample}

Each SQUID is coupled to a microwave resonator

• transmission line with unique f_{res}

 $\Delta \mathbf{I}_{\text{TES}} \rightarrow \Delta \Phi_{\text{SQUID}} \rightarrow \Delta \mathbf{f}_{\text{res}}$

TES readout: 3/3

Each TES is coupled with a rf-**SQUID**

- superconductive ring interrupted by a Josephson (insulant) junction
- sensitive magnetometer
- non-linear response

a sawtooth signal is used to linearize the SQUID response: **f**_{sawtooth} **= f**_{sample}

Each SQUID is coupled with a **microwave resonator**

• transmission line with unique f_{re}

Each resonator is coupled to a **<u>common feedline</u>**

- a comb of the resonant frequencies is sent
- the output phase difference is sampled

 $\Delta \mathbf{I}_{\text{TES}} \rightarrow \Delta \Phi_{\text{SQUID}} \rightarrow \Delta \mathbf{f}_{\text{res}} \rightarrow \Delta \phi$

Pile-up rejection: Wiener

Wiener filter

 Each event is filtered in order to <u>recover the time</u> profile of the energy deposition
 → the detector response is deconvolved

Single event \rightarrow single delta pulse

Pile-up event → multi-delta/broadened delta pulse

• discrimination through <u>Wiener shape parameters</u>: delta width at a given height, delta points above the latter and delta maximum

Pile-up rejection: DSVP

Discrimination through Singular Vectors Projections

- Unsupervised learning technique that discriminate pulses **looking at the average data 'morphology'**
 - $\circ \quad \mbox{a data-set with N}_{\rm good} >> \rm N_{\rm bad} \mbox{ is required to} \\ \mbox{create a reduced parameter space}$
- Iterative procedure that
 - <u>finds discrimination (hyper-surfaces)</u>
 <u>thresholds</u>
 - removes events different from the average
- More on this technique is presented [<u>Here</u>].

Pile-up rejection: simulations

To evaluate the behavior of our algorithms, we define an <u>effective time</u> <u>resolution</u> τ_{eff} :

 $\boldsymbol{\tau_{eff}} = (f_{pp}|_{after} / f_{pp}|_{before}) \cdot \delta \tau$

Simulations assume the first level data reduction reached a time resolution ($\delta\tau$) of 10µs, corresponding to f_{pp} ~2 (@ **300Hz/TES**)

- Inside the ROI:
 - τ_{eff} after <u>Wiener</u> ~ 3µs (f_{pp} ~ 0.6)
 - τ_{eff} after <u>Wiener</u> + <u>DSVP</u> ~ 1.5µs (f_{pp}~0.3)
- The pile-up fraction **over the entire EC spectrum** decreases from 10⁻³ to 10⁻⁴

