

Searches for neutrino physics beyond the standard model with KM3NeT/ORCA6

Víctor Carretero Cuenca (IFIC, Universitat de València - CSIC) on behalf of the KM3NeT Collaboration

International Conference of High Energy Physics 9/07/2022 (Bologna, Italy)

KM3NeT/ORCA

Neutrino Invisible Decay

Non Standard Interactions

Analysis

ORCA6 first results

Conclusions

KM3NeT/ORCA

KM3NeT (Kilometre Cube Neutrino Telescope) ORCA (Oscillation Research with Cosmics in the Abyss)

- Digital Optical Modules (DOMs) and Detection Units (DUs).
- Currently 11 DUs (out of 115) deployed for KM3NeT/ORCA.
- 7 Mtons of instrumented volume (KM3NeT/ORCA115).
- Detection principle: Cherenkov light produced in neutrino interactions.
- See previous presentation by V. Pestel.

ORCA6 dataset

Same dataset that was described in V. Pestel presentation.

- Only up-going events.
- 1237 neutrino candidates in 354.6 days.
- Only ~30 background events (atmospheric µ) expected.
- Signal dominated by ν_{μ} CC interactions.

Invisible Neutrino Decay Summary

- Motivation: Proposed as a solution to neutrino deficit. Ruled out as main contribution (oscillation) but not as a subdominant process.
- There are several models that can explain this neutrino decay:
 - 1. Majoron Model: $\nu_i \rightarrow \nu_j + J$.
 - **2. Dirac** Model: $\nu_i \rightarrow \bar{\nu}_j + \xi$
- Visible or <u>Invisible</u> Decay.
- Only ν_3 decays are not well constrained by data.
- A decay constant is introduced in the Hamiltonian: $\alpha_3 = \frac{m_3}{\tau_3}$

$$H_{T} = \frac{1}{2E} \begin{bmatrix} H_{vacuum} + H_{decay} + H_{matter} \end{bmatrix} = \frac{1}{2E} H$$
$$H = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} U^{\dagger} + U \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -i\alpha_{3} \end{pmatrix} U^{\dagger} + \begin{pmatrix} V & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\Delta m_{31}^{2} \to \Delta m_{31}^{2} - i\alpha_{3} \qquad V = \pm 2En_{e}\sqrt{2}G_{F}$$

Víctor Carretero | Searches for neutrino physics beyond the standard model with KM3NeT/ORCA6 | ICHEP 2022 (Bologna)

Invisible Neutrino Decay

Oscillation effects

Neutrino invisible decay effects:

- Unitarity breaking.
- Atmospheric oscillation damping.

Non Standard Interactions

- Motivation: NSI describe the effects at the electro-weak scale of possible new physics at a higher energy scale.
- Additional potential terms in the Hamiltonian.
- The terms have the following **impact**:
 - Diagonal: If different, violation of leptonic universality.
 - Off-diagonal: Flavour-changing neutral currents.
- Neutrinos could couple to electrons, down quarks or up quarks.
- Not sensitive to the relative coupling strengths. For this analysis, down quark coupling is considered.

$$H = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \sqrt{2} G_F n_{\theta} \begin{pmatrix} 1 + \epsilon_{\theta\theta} & \epsilon_{\theta\mu} & \epsilon_{\theta\tau} \\ \epsilon_{\mu\theta}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\tau\theta}^* & \epsilon_{\tau\mu}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

$$\epsilon_{\alpha\beta} = \epsilon_{\alpha\beta} + \frac{n_{u}}{n_{e}} \epsilon_{\alpha\beta}^{dC} + \frac{n_{d}}{n_{e}} \epsilon_{\alpha\beta}^{dC}$$

NSI effects most important signature

Main effects are seen near the vertical and for energies > 10 GeV.

Analysis

- 2D binned analysis in E_{reco} and $\cos \theta_{\text{reco}}$.
- Reconstructed events are computed taking into account:
 - Atmospheric flux.
 - Cross-sections.
 - Oscillation probabilities.
 - Effective mass.
- A χ² analysis is performed: Poisson log-likelihood and gaussian penalties for systematics.

$$\chi^2_{\rm total} = \chi^2_{\rm Stat} + \chi^2_{\rm Priors}$$

$$\chi^{2}_{\text{total}} = 2\sum_{i,j} \left[(N^{\text{mod}}_{ij} - N^{\text{dat}}_{ij}) + N^{\text{dat}}_{ij} \log \left(\frac{N^{\text{dat}}_{ij}}{N^{\text{mod}}_{ij}} \right) \right] + \sum_{k} \left(\frac{\epsilon_{k} - \mu_{k}}{\sigma_{k}} \right)^{2}$$

Nuisance parameters. The best fit values correspond to the standard oscillation model.

Systematic	Pull (σ)	Best Fit	Post-fit error	C. V.	Prior
Normalisation	1.2	0.88	0.10	1	None
ν_{τ} -CC normalisation	0.15	0.97	0.20	1	0.20
Cosmic muon normalisation	0.3	1.3	0.9	1	None
NC normalisation	0.2	0.9	0.5	1	0.5
$ u_{\mu}/ar{ u}_{\mu}$ ratio	0.0	0.00	0.05	0	0.05
$ u_e/\bar{\nu}_e $ ratio	0.0	0.00	0.07	0	0.07
$ u_{\mu}/ u_{e} $ ratio	0.0	0.000	0.020	0	0.020
Energy scale	0.0	1.00	0.05	1	0.05
Spectral index	1.2	0.05	0.04	0	0.3
$ u_{\rm up}/ u_{\rm horiz}$ ratio	0.1	0.002	0.020	0	0.020
$\Delta m_{31}^2 [10^{-3} \text{eV}^2]$	2.2	1.98	0.24	2.517	None
<i>θ</i> ₂₃ [°]	0.8	45	5	49.2	None

The most important systematics effects for both analyses are in **bold**, in **blue** for neutrino invisible decay and in **red** for NSI.

Víctor Carretero | Searches for neutrino physics beyond the standard model with KM3NeT/ORCA6 | ICHEP 2022 (Bologna)

 $\theta_{\rm 23}$ dependency was accounted for, so a 90% contour plot to constrain both of them is computed.

Lower limits for the **inverse of the decay constant** $1/\alpha_3 = \tau_3/m_3$ in ps/eV at 90% CL.

Experiment	L.L.(90%CL) (ps/eV)	Reference
ORCA6	2.4	Data analysis
ORCA115 (10y)	180	Sensitivity
T2K, NOvA	2.3	[1]
T2K, MINOS	2.8	[2]
K2K, MINOS, SK I+II	290	[3]

- Official results from experiments on this topic are scarce.
- Ref [3] was derived under the two flavour approximation and without matter effects.
- [1] S. CHOUBEY ET AL. Invisible neutrino decay in the light of NOvA and T2K data, Journal of High Energy Physics 2018 (2018).
- [2] R. GOMES ET AL. Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Physics Letters B (2015) 345–352.
- [3] M. GONZALEZ-GARCIA ET AL. Status of oscillation plus decay of atmospheric and long-baseline neutrinos, Physics Letters B (2008) 405–409.

Non Standard Interactions

Energy slices distributions.

$\epsilon_{\mu\tau}$ effects are more pronounced for **up-going** neutrino directions.

Non Standard Interactions

$\epsilon_{\mu\tau}$ KM3NeT/ORCA6 results not far away from the **world-leading** NSI measurements.

KM3NeT/ORCA6 limit: $-8.7 \times 10^{-3} < \epsilon_{\mu\tau} < 9.0 \times 10^{-3}$ KM3NeT/ORCA115 3-year sensitivity: $-1.7 \times 10^{-3} < \epsilon_{\mu\tau} < 1.7 \times 10^{-3}$ (TBU)

Víctor Carretero | Searches for neutrino physics beyond the standard model with KM3NeT/ORCA6 | ICHEP 2022 (Bologna)

Conclusions

- Preliminary studies of one year of data with only a 5% of the detector yields promising BSM results.
- Neutrino invisible decay constant constrained at 90% CL: $1/\alpha_3 = \tau_3/m_3 > 2.4 \text{ ps/eV}$
- NSI $\epsilon_{\mu\tau}$ parameter constrained at 90% CL: $[-8.7, 9.0] \times 10^{-3}$
- Several forthcoming improvements:
 - Analysis of additional half year of data.
 - Shower reconstruction.
 - Particle Identification classification.
- KM3NeT/ORCA keeps growing and the increase in statistics and resolution will enhance our sensitivity and potential to BSM physics.

Backup Slides

Victor Carretero | Searches for neutrino physics beyond the standard model with KM3NeT/ORCA6 | ICHEP 2022 (Bologna)

Invisible neutrino decay produces a depletion of events that is increased for vertical low energy events.

Most important systematics are Δm_{31}^2 and spectral index, which yields the biggest pull.

KM3NeT/ORCA115 will improve the current bounds on the invisible neutrino decay by two orders of magnitude, and it will be at least as competitive as future experiments.

Experiment	UL (90% CL) $[10^{-6} eV^2]$	LL (90% CL) [ps/eV]
KM3NeT/ORCA6	280	2.4
KM3NeT/ORCA115 (10 y)	3.7	180
T2K, NOvA	290	2.3
T2K, MINOS	240	2.8
K2K, MINOS, SK I+II	2.3	290
MOMENT (10 y)	24	28
ESSnuSB (5 ν +5 $\bar{\nu}$) y	16 — 13	42 — 50
DUNE $(5\nu+5\bar{\nu})$ y	13	51
JUNO (5 y)	7	93
INO-ICAL (10 y)	4.4	151

Non Standard Interactions

Oscillation effects

NSI effects most important signature

Mainly effects are seen at very vertical directions.

19

Victor Carretero | Searches for neutrino physics beyond the standard model with KM3NeT/ORCA6 | ICHEP 2022 (Bologna)

Flipping θ_{23} octant for high values of α_3 in the model reduces the difference with respect to standard oscillations.

This effect implies that as long as θ_{23} octant is not constrained with precision, sensitivity to α_3 could be affected.