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Reactor Antineutrinos
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Inverse 𝛽 decay (IBD): 

• Prompt: 𝐸prompt ≈ 𝐸𝑣 − 0.8 MeV

• Delayed: nGd (~8 MeV)  

nH (~2.2 MeV)

• Electron antineutrinos are produced in commercial nuclear reactor 
cores. 

• Mainly from fission fragments of the 4 fissile isotopes 235U, 238U, 
239Pu, and 241Pu. 
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Antineutrino Flux and Spectrum
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𝑅 =
𝑑𝑎𝑡𝑎

𝑀𝑜𝑑𝑒𝑙 (𝐻𝑢𝑏𝑒𝑟 + 𝑀𝑢𝑒𝑙𝑙𝑒𝑟)

= 0.953 ± 0.014(𝑒𝑥𝑝) ± 0.023(𝑚𝑜𝑑𝑒𝑙)

PRL 123 111801 (2019)

• Data/prediction spectrum shows an 

overall >5σ deviation, local deviation >6σ 

at maximum. 

• Spectral shape uncertainty (detector + 
background + statistic): ~0.5%

1958 days

As the fuel burns in the reactors, the 

fission fractions and the antineutrino 

flux also evolve.
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• First measurement of 235U and 239Pu 

spectra from commercial reactors. 

• Similar bump excess for 235U and 
239Pu in 4~6 MeV. 

• Local spectral deviation from 

prediction: 235U (4𝜎) and 239Pu (1.2𝜎). 

1958 days

PRL 123 111801 (2019)

Spectral shape

Isotopic Spectra
• Reduce the Pu spectrum uncertainty by 

combining 239Pu and 241Pu according to 

their fission fraction ratio

• Dependence on the input of 241Pu
largely removed. 

• Combined Pu spectrum uncertainty: 

6% (9% for Pu239-only). 



Data-based Prediction for Other Experiments
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• Total and isotopic antineutrino energy spectra is unfolded by Wiener-

SVD method. 

• Provide a data-based prediction for other reactor antineutrino 

experiments.
• With known reactor fission fractions, the technique can predict the energy 

spectrum to a 2% precision.

[Chinese Phys. C 45 

073001 (2021)]

Supplemental 

materials provided in 

arXiv:2102.04614. 



Joint Analysis by Daya Bay and PROSPECT
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• Compared with Daya Bay-only result, 235U spectral shape err: 3.5%→ 3%

• Reduce the degeneracy between 235U and 239Pu (by 20%). 

• Central values change within 2% (consistent within uncertainties). 

• Unfold the ҧ𝜈𝑒 spectrum with Wiener-

SVD method

• More precise prediction for other Exps

[Phys. Rev. Lett. 128, 081801 (2022)]
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• 𝜇 uncorrelated:

• 𝜇 correlated:
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High-energy Reactor Antineutrinos

• No evidence of reactor antineutrinos with 𝐸𝜈 > 9 MeV before this work.

• Generated by only a handful of short-lived 𝛽-decay nuclei with high Q𝛽

• Main backgrounds:
1. Muon decays (excluded by a 

vertex cut). 

2. Cosmogenic fast neutrons: 

vertices near the top of the AD.

3. Cosmogenic isotope decays: shorter 

time to the preceding muons. 



High-energy Reactor Antineutrinos
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• Multivariate analysis: event-by-

event fitter with above 

information: 

• Vertex 𝑧𝑝, time to 

preceding muons, reactor 

power

• Separate 2500 signal events 

from background in 𝐸𝑝 > 8 

MeV statistically. 

• Calculate the probability of 

being an IBD signal (PIBD) for 

each event with the best-fit 

values.

• PIBD distributions from data and 

fitting model are consistent 

within statistical uncertainty.
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High Energy Spectrum
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• Measured IBD yield compared w/ SM2018: 3% larger for 6-8 MeV (𝐸𝑝), but 29% 

smaller for 8-11 MeV (𝐸𝑝).  (Pandemonium-effect?) 

• Unfolded ҧ𝜈𝑒 energy spectrum for better application. 

• Significance in rejecting the hypothesis of no reactor antineutrinos above 10 MeV 

(𝐸𝜈) is determined to be 6.2σ. 

ICHEP2022

[arXiv:2203.06686]



Summary
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• Flux and spectral shape are both inconsistent with Huber-
Mueller model. 

• First measurement of 235U and 239Pu spectra from 
commercial reactor by reactor fuel evolution. 

• Antineutrino energy spectra are unfolded to provide data-
based prediction for other experiments.

• First combination between Daya Bay and PROSPECT to 
reduce the uncertainty of 235U spectrum. 

• First measurement of high-energy reactor antineutrinos. 

• Rejecting the hypothesis of no reactor antineutrinos above 10 MeV 
(𝐸𝜈) with 6.2σ.  

• Final Daya Bay results are expected with full data set. 



Thank you for your attention! 
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The Daya Bay Collaboration



Backup
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A Selection of Pictures
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A Selection of Pictures
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The Daya Bay Collaboration
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191 Collaborators,  41 Institutions

Asia (24)
Beijing Normal Univ., CGNPG, CIAE, Congqing Univ., 
Dongguan Univ. Tech., ECUST, GXU, IHEP, Nanjing Univ., 
Nankai Univ., NCEPU, NUDT, Shandong Univ., Shanghai 
Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, 
Xian Jiaotong Univ., Zhongshan (Sun Yat-sen) Univ.,
Chinese Univ. of Hong Kong, Univ. of Hong Kong,
National Chiao Tung Univ., National Taiwan Univ., 
National United Univ.

Europe (2)
Charles Univ., JINR Dubna

North America (15)
Brookhaven Natl Lab, Illinois Institute of Technology, Iowa 
State, Lawrence Berkeley Natl Lab, Princeton, Siena College, 
Temple University, UC Berkeley, Univ. of Cincinnati, Univ. of 
California Irvine, UIUC, Univ. of Wisconsin, Virginia Tech, 
William & Mary, Yale



Reactor ҧ𝜈𝑒 Flux Prediction
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• Summation (ab initio) method 
• > 6000 decay branches

• Missing data in the nuclear database

• ~30% forbidden decays

• ~ 10% uncertainty

• Conversion method 
• Convert ILL measured 235U, 239Pu 

and 241Pu 𝛽 spectra to ҧ𝜐𝑒 with 

>30 virtual 𝛽-decay branches

• Old: ILL + Vogel (238U)             

model (1980s)

• New: Huber + Mueller (238U)

model (2011)

• ~ 2.4% uncertainty
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Daya Bay Layout
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Detector System
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20 ton Gd-

doped Liquid 

Scintillator 

(GdLS)

22 ton 

LS

NIM A 811, 133 (2016)

Energy resolution:  𝜎𝐸/E ≅ 8.5%/√E[MeV]

192 8’’

PMTs

• Antineutrino Detectors (ADs):

• “Three-zone” cylindrical 
modules

NIM A 773, 8 (2015)

• Water Cherenkov Detector and RPCs:

• Shield the ADs from natural 
radioactivity and neutrons

• Veto cosmic-ray muons

Mineral Oil
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Energy Response
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~8.5% at 1 MeV

• Weekly calibration 
• 68Ge, 241Am13C, 60Co 

• Special calibration campaign
• 137Cs, 54Mn, 241Am9Be, 239Pu13C

• Special calibration in 2017: 60Co sources 

with different enclosures
➢ Optical shadowing effect

• Lead to improvement on energy 

nonlinearity model

• End of 2015: installation of a full FADC 

readout system in EH1-AD1
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EH1-AD1

a direct measurement of the

electronics non-linearity!



Energy Nonlinearity Model
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NIMA 230-242,940(2019)

• Model built by a combined fit to 

mono-energetic gamma lines 

and 12B beta-decay spectrum

• Improved uncertainty of 

nonlinearity energy model: ~1% 

→ ~0.5% since 2018.

Gamma calibration data

12𝐵 beta spectrum

Energy nonlinearity
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Detector Response
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Response matrix

• Detector response includes effects of 
➢ IBD neutron recoiling 

➢ IAV effect: energy loss in inner acrylic vessel 

➢ Nonlinearity (scintillation quenching, electronics response) 

➢ Energy Resolution: ~8.5% at 1 MeV 

Detection efficiency
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Absolute Spectrum Comparison for 235U
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Compare the spectrum without normalization
• The 8% deficit of 235U depends on the energy

• 11% deficit below 4 MeV for 235U spectrum → 8% overall rate deficit
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IBD Candidate Rate
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Relationship between the IBD candidate event 
rate per day and the weighted reactor power

• Clear correlation between R and Preactor

for prompt energy from 6 to 8 MeV

reactor antineutrino event 
rate per unit of reactor power

Background rate

weighted reactor power

• By decomposing R into two 

parts: 

• Significance of the 

correlation decreases to 

below 2.5 standard 

deviations above 8 MeV, 

• Much larger background to 

signal ratio

• Main backgrounds:
1. Muon decays (excluded 

by a vertex cut)

2. Cosmogenic fast 

neutrons

3. Cosmogenic isotope 

decays
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Fitting Method
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PDF: 

Ratio of event type p

z distr.Δt distr.

Reactor power 

information

constrains the nuisance parameters 
describing fp(t), hp(z) and kp(w)

multivariate analysis with 
event-by-event fitter

Fitting results for 3 EHs

Probability of being an IBD signal for 

each event with the best-fit values: 

PIBD distributions from data and fitting model 
are consistent within statistical uncertainty


