

Scattering and Neutrino Detecto at the LHC

SND@LHC A new Scattering and Neutrino Detector at the LHC

Ettore Zaffaroni ICHEP 2022, Bologna 07/07/2022

Outline

- The physics programme
- The SND@LHC detector
- Data acquisition system
- First data

Motivation

- LHC provides high-energy neutrinos
 - Use of LHC for neutrino studies proposed ~30 years ago
- Measure of $pp \rightarrow \nu X$ in unexplored domain
 - Energy range from 100s GeV to few TeV
 - Mainly produced in hadron decays for $\eta > 7$
- 2 experiments
 - FASERv, on axis
 - SND@LHC, off axis

EPFL

Ettore Zaffaroni

Detector location

Scattering and Neutrino Detector at the LHC

- About 480 m from ATLAS interaction point
- TI18 tunnel
 - Used in the past as transfer line from SPS to LEP
 - Symmetric to TI12, where FASER is located
- Shielded by 100 m of rock
- Angular acceptance: $7.2 < \eta < 8.4$
- First phase: collect 290 fb⁻¹ in Run 3

Scattering and Neutrino Detector at the LHC

Neutrino physics – charm production

- 90% of $\nu_{\rm e}$ events produced in charm decays
 - Measurement of heavy quark production at high η
- Measure $\sigma(pp \rightarrow \nu_e X)$
 - Unfold detector response and find energy spectrum
 - Use SM $\sigma_{\!\scriptscriptstyle \nu}$ for CC interactions
- · Derive charmed hadrons yield
 - Remove contribution from K decays
 - Exploit angular correlation between neutrino and parent hadron

LHCC-P-016

Ettore Zaffaroni

Neutrino physics – QCD

Scattering and Neutrino Detector at the LHC

- Angular correlation between charmed hadron and parent quark
- Dominant $c\bar{c}$ production process is gg scattering in this η range
 - SND@LHC probes lowest momentum fraction $x \sim 10^{-6}$, gluon PDF unknown
- Constrain PDF with data
 - e.g. take ratio of cross sections at different energy and η to reduce scale uncertainty (use LHCb measurement at 7 TeV and 4<η<4.5 as reference)

cattering and Neutrino Detector at the LHC

Neutrino physics – LFU

- $\nu_{\rm e}$ and ν_{τ} mostly come from charm decays
 - R₁₃ independent on charm production systematics
 - Depends on decay BR and charm fractions
- Similar for $\nu_{\rm e}$ and $\nu_{\mu},\,R_{\rm 12}$ with contamination by π/K
 - Contamination flat ~35% above 600 GeV
 - No systematics from BR and charm fractions

$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{Br}(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{Br}(D_s \to \nu_\tau)},$$
$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}}.$$

Ettore Zaffaroni

BSM physics - scattering

- Dense target also suited to search for feebly interacting particles
- E.g. search for light dark matter (< 1 GeV)
 - Other direct detection experiments sensitive lo large masses
 - Complementary to missing energy technique
- Several models and signatures
 - Elastic or inelastic scattering off nucleons
 - Elastic scattering off electrons
 - Time-of-flight techniques (sensitive to larger masses)

JHEP03(2022)006

Ettore Zaffaroni

9

Detector

Veto

SPS

- Scintillators: tag incoming muons
- Target region
 - Emulsion cloud chambers (830 kg): neutrino interaction detection
 - Scintillating fibres (SciFi) tracker: timestamp, position and energy measurement
- HCAL-Muon system
 - Iron walls and scintillators: energy measurement and muon detection

Scattering and Neutrino Detector

Scattering and Neutrino Detector at the LHC

- Mechanics and SciFi installed in November 2021
- HCAL-muon system installed in December 2021
 - Commissioning could begin
- Neutron shield completed in March 2022

Scattering and Neutrino Detecto at the LHC

- Mechanics and SciFi installed in November 2021
- HCAL-muon system installed in December 2021
 - Commissioning could begin
- Neutron shield completed in March 2022

- Mechanics and SciFi installed in November 2021
- HCAL-muon system installed in December 2021
 - Commissioning could begin
- Neutron shield completed in March 2022

Scattering and Neutrino Detector at the LHC

Scattering and Neutrino Detecto at the LHC

- Mechanics and SciFi installed in November 2021
- HCAL-muon system installed in December 2021
 - Commissioning could begin
- Neutron shield completed in March 2022

Scattering and Neutrino Detector at the LHC

Data acquisition system

- 37 boards used
- Synchronous to LHC clock
- Data transmitted to server on the surface
- TTC system receives LHC clock from BST and distributes it to DAQ boards

TTC: Timing, Trigger and Control BST: Beam Synchronous Timing

EPFL

Data acquisition system

- Trigger-less data acquisition
 - All hits are recorded and sent to the DAQ server
- Online event building
 - Hits within 25 ns are grouped into events
- Online event filtering
 - Noise reduced by requiring several planes in each event to detect signal

Event reconstruction

- FIRST PHASE electronic detectors
 - Identify neutrino candidates
 - Identify muons in the final state
 - Reconstruction of electromagnetic showers (SciFi)
 - Measure neutrino energy (SciFi+HCAL)

- SECOND PHASE nuclear emulsions
 - Identify EM showers
 - Neutrino vertex reconstruction and secondary search
 - Match with candidates from electronic detectors (timestamp)
 - Complement target tracker for EM energy measurement

First data – collisions

- Collisions began at the end of May
- Slowly increasing beam intensity
- Collected many thousands of events with muons from collisions

Reconstructed muon tracks angles

Early measurements (2022)

Scattering and Neutrino Detector at the LHC

- · Muon background with electronics detectors
 - Muon rates and direction
 - Comparison with simulation
- Neutrino interactions with electronic detectors
 - e.g. shower with no activity in the veto
- Analysis of emulsions
 - 1/20 of the target instrumented with emulsions
 - Extraction in July 2022
 - Evaluation of background, refinement of replacement frequency
- Full emulsion target in July 2022

event 26813 dT=1974606277.60ns 11000

500

z [cm]

Summary

- SND@LHC aims at
 - Measuring neutrinos produced at the LHC
 - Search for BSM physics
- SND@LHC has been installed at the end of 2021 and is currently taking data

Scattering and Neutrino Detector at the LHC

Backup

J.LHC

Scattering and Neutrino Detector at the LHC

Neutrino physics in Run 3

Measurement	Uncertainty	
	Stat.	Sys.
$pp \rightarrow \nu_e X$ cross-section	5%	15%
Charmed hadron yield	5%	35%
ν_e/ν_{τ} ratio for LFU test	30%	20%
ν_e/ν_μ ratio for LFU test	10%	10%
Measurement of NC/CC ratio	5%	10%

	Neutrinos in acceptance		CC neutrino interactions		NC neutrino interactions	
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
$ u_{\mu}$	120	$3.4 imes 10^{12}$	450	1028	480	310
$ar{ u}_{\mu}$	125	$3.0 imes 10^{12}$	480	419	480	157
$ u_e$	300	$4.0 imes 10^{11}$	760	292	720	88
$ar{ u}_e$	230	$4.4 imes 10^{11}$	680	158	720	58
$ u_{ au}$	400	$2.8 imes 10^{10}$	740	23	740	8
$ar{ u}_{ au}$	380	$3.1 imes 10^{10}$	740	11	740	5
TOT		$7.3 imes 10^{12}$		1930		625

Emulsion cloud chambers

- 5 walls interleaved with SciFi modules
 - 1 wall: 60 alternating layers of tungsten sheets (1 mm) and emulsion films (0.3 mm)
- Micrometric spatial resolution but no timestamp
- Vertex detector, ecal (40 X₀ per wall)
 - Allow to identify tau neutrinos
- Exposed for ~25 fb⁻¹, then developed and scanned

SND@LHC brick

192 mm

Emulsion Cloud Chamber (ECC)

SND@LHC wall

Target tracker

- Based on LHCb SciFi technology
- Scintillating fibre mats read out by SiPMs
 - 39x39 cm² active area
- < 100 um spatial resolution</p>
- ~350 ps time resolution
- Locate neutrino interactions in emulsions and assign timestamp
- First energy measurement (refined after emulsions development)

Ettore Zaffaroni

Veto and HCAL-muon system

- Scintillator bar of different sizes
- Veto 42x42 cm²
 - Optimized for particle detection efficiency
- Upstream HCAL-muon 80x60 cm²
 - Optimized for energy measurement
- Downstream HCAL-muon 80x60 cm²
 - Optimized for muon isolation and detection efficiency

The DAQ boards

- Same DAQ board for all subsystems
- Developed at EPFL, based on Cyclone V processor+FPGA
 - Clock from TTC system, using TTCrx chip
 - Data transmitted over Ethernet to the server
- 4 front-end board slots
 - 512 channels in total

Scattering and Neutrino Detector at the LHC

The front-end boards

- Each board contains 2 TOFPET2 chips
 - Analogue front-end and ADCs
 - Data fully digitized
 - 128 channels in total
- Allows for low signal thresholds (0.5 pe)
 - 3-threshold system for best time and amplitude resolution and dark noise reduction
- Good timing (40 ps resolution) and amplitude measurement with charge integration or time-over-threshold

Scattering and Neutrino Detector at the LHC

EPFL

Detector

FRONT VIEW

Ettore Zaffaroni

Scattering and Neutrino Detecto at the LHC

Beam splashes

- Beam 1 hits a collimator on the left side of ATLAS
- A shower of particles is generated
 - O(106) muons
- We also see particles coming from Beam 2 splashes in ALICE

Beam splashes

- Beam 1 hits a collimator on the left side of ATLAS
- A shower of particles is generated
 - O(106) muons
- We also see particles coming from Beam 2 splashes in ALICE

