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Liquid Argon TPC
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DUNE

SBN Program

LArTPC Signal Formation Illustration
by B. Yu (BNL)

• ~mm scale position resolution with multiple 1D 
wire readouts

• Particle identification (PID) with energy 
depositions and topologies



Wire-Cell Event Reconstruction
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3D imaging

clustering

charge-light matching

3D trajectory & 
dQ/dx fitting

cosmic muon tagger

TPC simulation

noise filtering

signal processing

multi-track fitting

DL-3D vertexing

particle identification
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Search for Low-Energy Excess in νeCC
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No excess of low-energy νe candidates! 

Phys. Rev. Lett. 128, 241801

Channels Reconstruction Purity Efficiency Selected 
Events References

CCQE 1e1p Deep Learning 75% 6.6% 25 PRD 105 112003
1e0p0π Pandora 43% 9% 34 PRD 105 112004
1eNp0π Pandora 80% 15% 64 PRD 105 112004

Inclusive 1eX Wire-Cell 82% 46% 606 PRD 105 112005

Comprehensive search for (examination of) the MiniBooNE low-
energy excess in νeCC with multiple final-state topologies with 
different reconstruction paradigms

Wire-Cell based inclusive νeCC analysis (46% efficiency) 
currently leads sensitivity in searching for the LEE



TPC Signal Processing à Recover (or Unfold) 
Ionization Electrons
• Signal processing is based on deconvolution technique

• O(N3) matrix inversion is achieved through a O(N logN) 
fast Fourier transformation

• Top 10 algorithms in 20th century
• 1-D deconvolution described in B. Baller “Liquid Argon TPC 

Signal Formation, Signal Processing, and reconstruction 
techniques”, JINST 12, P07010 (2017)
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2-D Deconvolution

Position-dependent responses
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Decon. w/ Tight LF

Decon. w/ Loose LF
ROI Finding ROI

2D decon.Input Waveform

Decon. w/o LF

SigProc Result

2D measurement formation

2D deconvolution

2D decon. + ROI

electron drift 
paths in 3D



Improved TPC Signal Processing

Original 2D 
deconvolution

1D 
deconvolution

2D deconvolution1D deconvolution

The 2D deconvolution algorithm in Wire-Cell allows 
to accurately recover the ionization electrons from 
recorded original signals

Same number of electrons are reconstructed from 
each projection wire plane

JINST 13 P07006/7 7

http://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07006


DNN ROI finding to improve LArTPC Signal Processing
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• “Prolonged Track” – weak signal
• “Tear Drop” - distorted waveform

JINST 13 P07006 (2018)
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DNN ROI finding with multi-plane information
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Multi-plane information in Signal Processing DNN ROI finding with multiple input channel

JINST 16 P01036 (2021)

https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01036


DNN ROI finding with multi-plane information
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tested on ProtoDUNE-SP data

Traditional

DNN w/ MP

DNN With 3-plane 
information

ProtoDUNE simulation
ROI finding on V plane (2nd induction)

JINST 16 P01036 (2021)

https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01036


3D Pattern Recognition
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Sparse Regression U-Net

Graph theory
(e.g., Steiner tree)

JINST 17 P01037 (2022)

https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037


Deep Learning based Neutrino Interaction Vertex Finding
Regressional segmentation with a sparse U-Net
• U-Net: efficiently use geometry info which is critical

• compared to graph networks
• Regressional loss on distance based “confidence map” to use a region of points instead of only one

• otherwise, data is highly imbalanced (Z. Cao etc, arXiv:1812.08008)
• Sparse: boosted computing efficiency with our sparse 3D data

• Submanifold Sparse Convolutional Networks (B. Graham etc, arXiv:1706.01307)

Zoom in3D points from Wire-Cell
2D projection
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Regressional segmentation
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Initially we used Cross Entropy loss
• effectively only use the vertex information for one space point
• doesn’t care about the distance between the prediction and the target.

• while our main metric is this distance.

⟶ encode the distance information for a region of points
• predicting the full “confidence map” instead of only one point

• current mapping: OpenPose: 
https://arxiv.org/pdf/1812.08008.pdf
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https://arxiv.org/pdf/1812.08008.pdf


Network structure and data format
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3D charge 
reco’ed from 

Wire-Cell

Sparse 
U-Net

Fully 
connected 
+ sigmoid

confidence 
value for 

each voxel

Used SparseConvNet to realized 3D sparse conv. DNN
https://github.com/facebookresearch/SparseConvNet

This work: https://github.com/HaiwangYu/uboone-dl-vtx

coordinates features label
x y z q ... conf.

int int int float ... float

int int int float ... float

int int int float ... float

... ... ... ... ... ...

label: color is truth
confidence map

input: color is
charge

SparseConvNet

https://github.com/facebookresearch/SparseConvNet
https://github.com/HaiwangYu/uboone-dl-vtx
https://github.com/facebookresearch/SparseConvNet


Deep Learning based Neutrino Interaction Vertex Finding

𝜈!CC vertex identification efficiency

Distance between reco. and true vertex (cm)

Rel. improved 30%

Illustration of impact of vertex ID on the 
full event reconstruction 

JINST 17 P01037 (2022)
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https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037


Summary
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# patterns

Machine Learning

Conventional

pattern
complexity

Combine Both

Either

• The Wire-Cell team has developed a fully 
automated reconstruction chain for LArTPC 
reconstruction for neutrino experiments

• Its good performance was demonstrated in
MicroBooNE analyses

• We learned that some tasks in the chain fit 
better for conventional alg. while some others 
fit better for ML alg.

• I believe combining both would give us the 
best performance with limited data and 
computing resources 


