

ICHEP 2022 XLI

International Conference on High Energy Physics Bologna (Italy) 6 13 07 2022

Neutrino Physics with PandaX-4T

Ke Han (SJTU)

For the PandaX Collaboration

2022/7/9

Arxiv:2205.12809

PandaX-4T

- A multi-ton dual phase xenon TPC at China Jinping Underground Laboratory
- Primary science goal: dark matter direct detection and neutrinoless double beta decay, etc
- Commissioned since late 2020. data released: Nov. 28, 2020 to Apr. 16, 2021

Expected background budget for PandaX-4T before commissioning

See more
Recent progress and
plan of PandaX
experiment

Jul 9, 2022, 3:50 PM Room 11 (Magenta A)

Double beta decay

- Neutrinoless double beta decay probes the nature of neutrinos: Majorana or Dirac
- Lepton number violating process
- Measure energies of emitted electrons

Measuring the DBD half-life

SE TOTONG THE

- Precision measurement of DBD is a major first step for any NLDBD experiment
- Understand better the background for more rare searches

 Searching for possible shape distortion for new BSM physics

Extending DM detector response to MeV range

- MeV gamma events are mostly multiple-scattering events;
 while signals (DBD) are mostly single site (SS)
- Identifying Multi-Site (MS) events with PMT waveforms
- Width of waveforms dominated by Z (electron diffusion)

Data-driven diffusion width as input for simulation

FWHM mean vs dt vs qS2

- Pulse width of SS events are calculated from data
- Used for simualtion of waveforms after Geant4 output

Validation with calibration data

The overall agreement is at 1.7% level, taken as systematics

PMT pulse saturation and desaturation

- PMT bases suffer serious saturation for MeV range events.
- Match the rising slope of the saturated to the non-saturated templates in the same event
- For events in the energy range of 1 to 3 MeV, the average correction factor is \sim 3.0 for the top PMT array
- Procedure validated with bench test. De-saturated charge used for position but not energy reconstruction

Position reconstruction improvement with desaturation

SIN TONG UNITED STATES OF THE STATES OF THE

- Position reconstruction based on PAF (photon acceptance function) methods devloped in DM analysis
- Reconstruction at HE is significantly improved with desaturation
- Removed the band structure in R² distribution

Energy reconstruction

- Energy reconstruction: $E = 13.7 \text{ eV} \times (S1/PDE + \frac{S2_b}{(EEE \times SEG_b)})$
- High energy peak positions off by ~10% with inputs from DM analysis
- Further tune S1 and S2_b vs. energy and position \rightarrow deviations of peak positions to the percent level.

PDE: photon detection efficiency for S1

EEE: electron extraction efficiency

SEG_b: single-electron gain for S2_b

Background peaks

- Resolution of background data: 1.9% at 2615 keV; 3.0% at 236 keV
- Resolutions from different peaks as input for simulated spectrum

Signal Efficiencies

- SS efficiency: 97.4% for DBD events > 440 keV
- DBD events generated with DECAYO package and went through PandaX-4T simulation and data processing chain.

- (Very mild) Data quality cut efficiencies: (99.4 ± 0.4)%
 - S1, S2, S1/S2: remove non-electron recoil and alpha events
 - Top and bottom S1 charge asymmetry vs. drift time: reject accidental coincidence events and events originating from the gate electrode.
 - Calculated by region
- Calculated from 9.6 days of physics data; validated with full data
- Validated with 164 and 236 keV peaks

Fiducial Volume: emphasis on systematics, not statistics

- Compare the number of events of ^{83m}Kr and ²²⁰Rn with geometric volume; the non-linearity between the two <0.5% defines the cut in R direction
- Z direction: smaller background rate
- 649.7 ± 6.5 kg of xenon

FV mass

Background components

- Three categories: top bottom and side, based on weight and relative contribution to background counts in the ROI
- Input values based on HPGe assay results and high energy alpha events

D-44	01	E
Detector part		Expected counts
Тор	^{238}U	334 ± 127
	$^{232}\mathrm{Th}$	397 ± 131
	$^{60}\mathrm{Co}$	322 ± 137
	$^{40}\mathrm{K}$	296 ± 155
Bottom	^{238}U	143 ± 52
	232 Th	240 ± 120
	$^{60}\mathrm{Co}$	161 ± 97
	$^{40}\mathrm{K}$	90 ± 85
Side	^{238}U	469 ± 697
	232 Th	777 ± 945
	$^{60}\mathrm{Co}$	1227 ± 938
	$^{40}\mathrm{K}$	1498 ± 822
LXe	222 Rn	8951 ± 186

Simultaneous binned likelihood fit in four regions

$$L = \prod_{i=1}^{N_{\rm R}} \prod_{j=1}^{N_{\rm bins}} \frac{(N_{ij})^{N_{ij}^{\rm obs}}}{N_{ij}^{\rm obs}!} e^{-N_{ij}} \prod_{k=1}^{N_{\rm bkgs}} \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{1}{2}(\frac{\eta_k}{\sigma_k})^2}, \qquad N_{ij} = n_{\rm Xe} S_{ij}^{\rm Xe} + \sum_{k=1}^{N_{\rm bkgs}} (1 + \eta_k) n_{ij}^k B_{ij}^k,$$

¹³⁶Xe fit results: 17468±243; 2.27 ± 0.03(stat.) ± 0.09(syst.) × 10^{21} year half-life

Cross check with RooFit likelihood fit

Systematic uncertainties

systematic source	Uncertainty [%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
Pb214 spectrum correction	2.03
Bin size	0.05
Xe136 abundance	1.92
Energy range	1.23
Region difference	1.58
resolution	0.58
shift MC spectrum	0.26
total	4.05

Systematic uncertainties

systematic source	Uncertainty [%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
Pb214 spectrum correction	2.03
Bin size	0.05
Xe136 abundance	1.92
Energy range	1.23
Region difference	1.58
resolution	0.58
shift MC spectrum	0.26
total	4.05

- ¹³⁶Xe IA: 8.79% if ionization efficiencies not corrected; 9.03% if corrected with NIST values
- Taken nominal value 8.86% as input and difference to our measurement as uncertainties

Conclusion: Final results

- 136 Xe DBD half-life measured by PandaX-4T: 2.27 ± 0.03(stat.) ± 0.09(syst.) × 1021 year
- Comparable precision with leading results
- First such measurement from a DM detector with natural xenon
- 440 keV 2800 keV range is the widest ROI

