

Hen Lab

Laboratory for Nuclear Science @

Or Hen (MIT), For the MicroBooNE Collaboration

Oscillations Rely on Neutrino Interaction Models

Nature 599, 565 (2021)

MicroBooNE is providing much-needed data with Argon

- Liquid argon time projection chamber (LArTPC) at Fermilab
 - Low-threshold, fully active tracking calorimeter
 - Detector technology shared by **SBN** and **DUNE**
- Largest neutrino-argon data set (~0.5 M events in 5 years)
- 30 active cross-section analyses

1. Inclusive + Hadronic Calorimetry

2. Quasielastic-like single-proton knockout

3. Neutral-current (NC) π^0

Oscillations require energy-dependent event rates:

Hadronic energy modeling is crucial for neutrino calorimetry

 $E_{\nu} = E_{\ell} + \omega$

$\omega = E_{\rm had} + E_{\rm miss}$

Oscillations require energy-dependent event rates:

Hard

Hadronic energy modeling is crucial for neutrino calorimetry

- "Easy" $E_{\nu} = E_{\ell} + \omega$

$\omega = E_{had} + E_{miss}$

Emiss can be a large fraction of the total energy!

We know it doesn't work that well...

CLAS and e4v Collaborations, Nature 599, 565 (2021)

- RES DIS
- --- G2018

Lbeam

Kinematic Constraints on E_v and ω

(validated using GENIE v2 simulations)

E_{had} (MeV)

(GiBUU has higher MEC contribution)

Phys. Rev. Lett. 128, 151801 (2022)

Cross-sections discriminate between models

1p knockout: clean & simple quasielastic process

PRL 125, 201803 (2020)

New 2022: x30 higher statistics; Improved systematics

10

$\delta p_T = \left| \mathbf{p}_T^{\mu} + \mathbf{p}_T^{p} \right| = 0$

Transverse projections trivially equal and opposite (momentum conservation)

$\delta p_T = |\mathbf{p}_T^{\mu} + \mathbf{p}_T^{p}| > 0$

Imbalance due to initial nucleon motion and other nuclear effects

Hadronic final-state interactions (FSI)

Orientation of the imbalance ($\delta \alpha_T$) also meaningful

High $\delta \alpha_T$ values correspond to proton deceleration due to FSI

Single differential: Some FSI sensitivity

17

Double differential: Large FSI sensitivity!

Two-proton knockout: **Constraining MECs**

- MEC is a key process that has little existing constraint.
- 2p data sensitive to detail MEC kinematics, not only total rate!

Total Proton Momentum Vector

v_{e} & BSM Background : Neutral-Current π^{0} production

- $\pi^0 \rightarrow \gamma \gamma$ looks like e⁻ when missing one v-shower
 - \rightarrow Mimics v_e interaction
- LArTPCs provide powerful, but not perfect, γ/e - discrimination
- Remaining π⁰ background must be estimated via simulation
- How well-modeled are the NC π^{0} interactions?

Neutral-Current $1\pi^0$ total cross sections

- First NC $1\pi^{0}$ inclusive on argon with $\langle E_{\nu} \rangle \approx 1 \text{GeV}$
- First exclusive NC 1π⁰ measurements in the 0p and 1p channels (any target)
- Data systematically slightly lower than models
- Also useful for non-v_e BSM searches

arXiv:2205.07943, submitted to PRD

Neutral-Current π⁰ differential cross sections

- Analysis for NC (≥1)π⁰ well underway
 - ~1 σ deficit apparent over much of the phase space
- Preliminary result statistics-limited
 - Few % of available data
- Much more coming soon!

MICROBOONE-NOTE-1111-PUB

http://microboone.fnal.gov/public-notes/

I NANK YOU!

