

Daya Bay oscillation results with full dataset

Vít Vorobel, Charles University, Prague on behalf of Daya Bay Collaboration

Reactor anti-neutrino oscillation

Detection of \overline{v}_e

Inverse beta-decay (IBD) in Gd-doped liquid scintillator:

 $\begin{array}{l} E_{-\overline{\nu}} \approx T_{e+} + T_n + (m_n - m_p) + m_{e+} \approx T_{e+} + 1.8 \mbox{ MeV (threshold)} \\ E_{prompt} = T_{e+} + 2m_e \mbox{ (annihilation gammas)} \\ E_{-\overline{\nu}} \approx E_{prompt} + 0.8 \mbox{ MeV} \end{array}$

Daya Bay experiment

6 low enriched uranium (LEU) commercial reactors, each with 2.9 GW thermal power.

Eight identically designed underground detectors deployed at different baselines

The largest dataset (~6 million) of reactor antineutrinos collected from December 2011 to December 2022.

Zone	Mass	Liquid	Purpose
Inner acrylic vessel	20 t	Gd-doped liquid scintillator	Anti-neutrino target
Outer acrylic vessel	20 t	Liquid scintillator	Gamma catcher (from target zone)
Stainless steel vessel	40 t	Mineral Oil	Radiation shielding

• Outer layer of water Čerenkov detector is 1 m thick, inner layer >1.5 m.

• 4-layer RPC modules above pool

Latest Results

- 1. Precision measurement of $sin^2 2\theta_{13}$ and Δm_{32}^2 using the full neutroncapture-on-gadolinium (nGd) data set (this talk, poster #715)
- 2. Joint spectral determination of reactor antineutrinos from ²³⁵U and ²³⁹Pu fission of Daya Bay and PROSPECT (next talk)
- 3. First measurement of high-energy reactor antineutrinos with energy between 8 MeV and 11 MeV (next talk, poster #469)

Recent results from Daya Bay in the poster session:

- Daya Bay neutrino oscillation results based on neutron captured on Hydrogen (poster #851)

Another research in Daya Bay:

- Muon modulation study (poster #979)
- Search For Electron-Antineutrinos Associated With Gravitational-Wave Events at Daya Bay (poster #850)

Oscillation Parameters: Improvements

Statistics of nGd data:

Year	Calendar days	EH1	EH2	EH3	Total IBD's
2018 (PRL 121, 241805)	1958	1,794,417	1,673,907	495,421	3,963,745
2022	3158	2,236,810	2,544,894	764,414	5,546,118

Analysis:

- Energy calibration
 - Electronics non-linearity calibrated at the channel-by-channel level
 - Improved non-uniformity correction
- New correlated background after 2017
 - Remove additional very rare PMT flashers
 - Suppress and identify untagged muon events
- Correlated background

- New approach for determining the ⁹Li/⁸He background

Full Dataset

Three physics runs:

Configuration	EH1	EH2	EH3	Start data – End data	Duration (Days)
6-AD	2	1	3	24 Dec 2011 – 28 July 2012	217
8-AD	2	2	4	19 Oct 2012 – 26 Dec 2016	1524
7-AD	1	2	4	26 Jan 2017 – 12 Dec 2020	1417
Total					3158

Data available for analyses: ~2700 days

Correlation with operation of reactors

- Expectation based on weekly reactor operational information
- Measurements track expectations

Energy Scale

Gain of photomultiplier tubes

- Single-photoelectron dark noise
- Weekly LED monitoring
- **Energy calibration**
 - Weekly ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C
 - Spallation neutrons
 - Natural radioactivity

Nonuniformity corrections

Relative uncertainty in energy scale: ~0.2% Uncertainty in absolute energy ~0.5% Energy resolution $\frac{\sigma_E}{E} = \frac{0.09}{\sqrt{E[MeV]}}$

8

Background

Uncorrelated background

- Accidental

Correlated background

- Fast neutron
 - produced outside of the AD but enters the active volume of the AD

- ⁹Li/⁸He new approach

- spallation product produced by cosmic-ray muons inside the AD

-241 Am- 13 C

- neutron calibration source resides inside the ACU

 $- {}^{13}C(\alpha, n){}^{16}O$

 $-\alpha$ from decay of natural radioactive isotope in the liquid scintillator

- Residual PMT flasher

- new background

- Muon-x

⁹Li/⁸He Background

Perform a multi-dimensional fit using

- Time interval after the preceding muon $(t_{\text{IBD}}-t_{\mu})$
- Prompt energy (E_{prompt})
- Distance between the prompt and delayed signals ($\Delta R)$
- Low-energy (E_{vis} < 2 GeV) and high-energy (E_{vis} > 2 GeV) muon samples from all three halls simultaneously

 β -n decay

- $T_{Li} = 257.2 \text{ ms}$
- T_{He} = 171.7 ms

Residual flashers rejection

- Residual flashers located near the top of some ADs
- Removed by cutting on Kurtosis and time_PSD_local_RMS
- After rejecting residual flashers,
 - Contamination in the IBD sample is negligible
 - Retain 99.997% of the IBD candidates

Fast neutrons and Muon-x Background

- Fast spallation neutrons generated outside of the water pool
- Muon decays and additional spallation (muon-x) on top of ADs
 - negligible before 2017, become considerable after the gradual failure of water pool PMT or high-voltage channels in the inner water Cherenkov counter (IWS) in the water pool
- Lower the hit multiplicity of PMTs (nHit) in IWS from 12 to 6 to tag muons
 - Reject about 80% of muon decays with < 0.1% livetime loss
- Remaining Muon-x is estimated together with fast neutrons
 - Extend cut on E_{prompt} from 12 MeV to 250 MeV spectrum for fast neutrons and muon-x

Selection of v_e Candidates

Remove flashing PMT events

Veto muon events

Require 0.7 MeV < E_{prompt} < 12 MeV, 6 MeV < E_{delaved} < 12 MeV

Neutron capture time: $1 \ \mu s < \Delta t < 200 \ \mu s$

Multiplicity cut: select time-isolated energy pairs

PRD95 (2017) 072006

Best-fit results:

 $\chi^2/ndf = 559/518$

 $sin^2 2\theta_{13} = 0.0853^{+0.0024}_{-0.0024}$ (2.8% precision)Normal hierarchy: $\Delta m_{32}^2 = +(2.454^{+0.057}_{-0.057}) \times 10^{-3} \, \text{eV}^2$ (2.3% precision)Inverted hierarchy: $\Delta m_{32}^2 = -(2.559^{+0.057}_{-0.057}) \times 10^{-3} \, \text{eV}^2$ (2.3% precision)

Present Global Landscape

Compare Daya Bay's current results with published results

Summary

Daya Bay experiment

- Has acquired the largest sample of reactor antineutrinos to date.
- Obtains the world's most precise determination of $sin^2 2\theta_{13}$.
- Provides one of the best measurements of $|\Delta m_{32}^2|$.
- Yields leading results on other topics not covered here such as
 - Search for a light sterile neutrino,
 - Measurement of absolute flux and spectrum of reactor v_e ,
 - Evolution of absolute reactor v_e flux and spectrum.
- Will have more results to be presented in the future, for example
 - Updated results on oscillation parameters with nH samples.