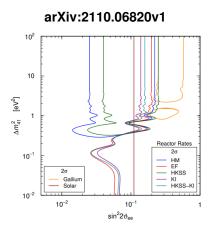
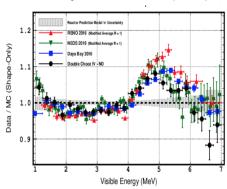


The SoLi∂ experiment @ BR2


New Reconstruction and Calibration techniques

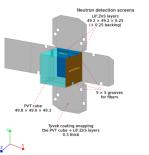
Mykhailo Yeresko (LPC, Clermont University and CNRS/IN2P3)
On behalf of the SoLi∂ collaboration


41th International Conference on High Energy Physics 2022

July 8, 2022

Physics motivation

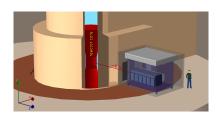
Nat. Phys. 16, 558-564 (2020)



1/19

- Deficit w.r.t. predictions of reactor/source anti-neutrino flux
- Oscillations to light sterile neutrino state could account for it
- ▶ Distortion of reactor $\bar{\nu}$ energy spectrum, aka the "5 MeV bump"

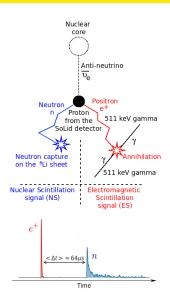
The SoLi∂ experiment



- Set at the BR2 research reactor (Mol,Belgium)
 - Compact core (∅ 50 cm)
 - ► ²³⁵*U* enriched reactor core (95%)
 - Very short baseline experiment [6.5-9] m
 - ➤ ≈ 140 days of operation/year
- Detector layout:
 - 5cm sided cube made of polyvinyltoluene lined with 2 layers of ⁶LiF:ZnS
 - Individual cubes wrapped with Tyveck
 - Light is taken to the boundaries by wavelength-shifting optical fibres
 - Cubes arranged in layers of 16×16 units
 - Layers are further optically decoupled with two square Tyvek cover sheets

SoLi∂ collaboration July 8, 2022 2/19

The SoLi∂ experiment


- ► Set at the BR2 research reactor (Mol,Belgium)
 - Compact core (⊘ 50 cm)
 - 235 U enriched reactor core (95%)
 - Very short baseline experiment [6.5-9] m
 - ➤ ≈ 140 days of operation/year

Detector layout:

- 5cm sided cube made of polyvinyltoluene lined with 2 layers of ⁶LiF:ZnS
- Individual cubes wrapped with Tyveck
- Light is taken to the boundaries by wavelength-shifting optical fibres
- Cubes arranged in layers of 16 × 16 units
- Layers are further optically decoupled with two square Tyvek cover sheets

SoLi∂ collaboration July 8, 2022 2/19

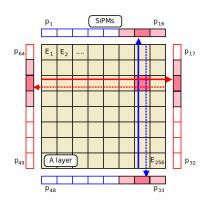
The detection principle

Inverse beta decay (IBD) to detect ν̄:

$$\bar{\nu}_{e} + p
ightarrow n + e^{+}(\gamma \gamma)$$

- Neutron scintillation signal [NS]:
 - Generated by the ZnS
 - Energy is issued from n capture on the ⁶Li

$$n + {}^{6}\text{Li} \rightarrow {}^{3}\text{H} + \alpha$$


- Electromagnetic scintillation signal [ES]:
 - Generated by the PVT
 - Proton-rich $\bar{\nu}$ target
 - Measures e⁺ ionisation energy
 - Measures annihilation γ energy
 - High granularity allows to distinguish ionisation and annihilation contributions!

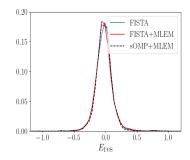
3/19

NS and ES correlated in time: $\Delta t = t_{NS} - t_{ES}$

New reconstruction [CCube algorithm]

- The fibres project the deposited energies to the boundaries of the detector
- The digitised SiPM readout from the fibers are the raw detector data
 - ⇒ Reverse engineering is required to restore the list of involved cubes
- Each layer is a separate problem
- Parametrisation:
 - Unknowns: PVT deposits (E_i)
 - p_j are the SiPM measurements
- Challenges:
 - Cube projects through adjacent fibers
 - Fibers can overflow during the run

SoLi∂ collaboration July 8, 2022 4/19


New reconstruction [CCube algorithm]

The reconstruction problem can be put down as the following:

$$p = AE$$

where A is so-called system matrix (SM) which embodies overall response of the detector. This equation has been widely studied in medical imaging and particle physics.

- Several algorithms has been tested
- The choice of the initializer has a large impact
 - Fibers with more light should be preferred to form a cube → Orthogonal Matched Pursuit
- sOMP+ML-EM shows superior performance:
 - For the reconstruction efficiency
 - For the fake cubes (♠) rate
 - Similar energy resolution = 13%

Method	FISTA	FISTA+ML-EM	sOMP+ML-EM
<u>A</u> (%)	15.8	11.4	6.9
ϵ (%)	75.3	76.3	77.7

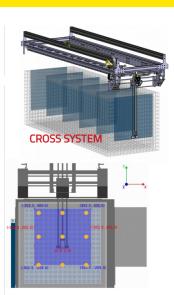
SoLi∂ collaboration July 8, 2022 5/19

ES calibration overview

- · Calibration w/ horizontal muons:
 - Relative calibration
 - Higher precision
 - · Access to the Light Leakages
 - Time evolution of the response
 - Absolute scale calibration(?)
 - dE/dx values

- Calibration w/ radioactive sources:
- Relative calibration
- · Time evolution of the response
 - Calibration campaigns required
- Absolute scale calibration:
 - 22Na: developed, low energy range

6/19


• AmBe: TBD, desired energy range

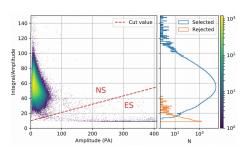
SoLi∂

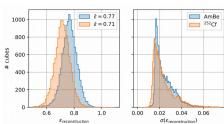
- · Crosschecks:
 - Identification of the wellknown sources of the bckg
 - Cosmogenic (12B, etc.)

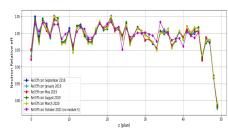
- · Crosschecks:
 - Validation with natural radiation source (²¹⁴Bi)
 - Data/MC comparison

Calibration with sources

- Automated calibration system (CROSS)
- 9 radioactive source positions in 6 gaps
- ► Each gap is used to calibrate ±5 planes around (~25 cm) ⇒ Need for penetrating sources
- Available calibration sources:
 - Gamma sources: ¹³⁷Cs, ²⁰⁷Bi, ²²Na, AmBe
 - Neutron sources: ²⁵²Cf and AmBe

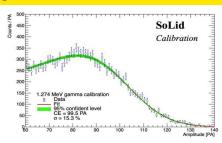

Challenges:

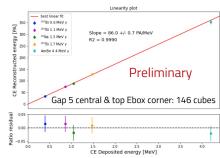

- Calibrate 12 800 detection cells and 3 200 channels with several calibration parameters:
 - \implies > 20 000 parameters to measure and correct
- Cube signal that combines signals of 4 fibers:
 - Difficult to split cube effect from fiber effect
 - Each fiber is shared by 16 cubes inducing correlations between cubes


SoLi 2 collaboration July 8, 2022 7/19

Calibration with sources [NS]

- Good NS/ES discrimination
- ► Good agreement between the 2 sources
- $\epsilon_{Neutron} = 73.9^{+4.0}_{-3.3}\%$ measured per cube
- ► Relative module detection efficiency within 3% (< 1% for 4 modules)

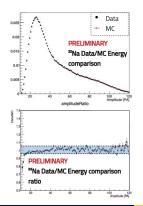


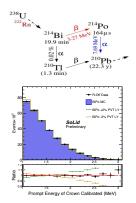


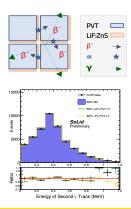
SoLi 2 collaboration July 8, 2022 8/19

Calibration with sources [ES]

- No access to the photoelectric peak
 - ⇒ Compton edge fit
- ► Two approaches ⇒ [Light Yield (LY -
 - #PA/MeV) + energy resolution]:
 - Klein-Nishina based analytical fit
 - Kolmogorov-Smirnov test
- Channel parameters measured/quantified
 - ► SiPMs equalized at 1% level
 - Individual Fiber attenuation
 - Fiber SiPM optical coupling
- < 5% LY variations module per module</p>
- ► Linearity in the [.5 4] MeV region
- ▶ Fres ~ 15% at 1 MeV

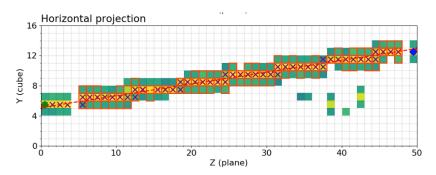





9/19

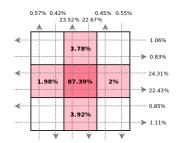
Crosschecks and validations

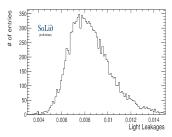
- ► An important work has been done to achieve good Data/Monte Carlo agreement
- ightharpoonup 22Na source \Rightarrow Data/MC at low energy for cubes and fibers. <5% in [.2, 1.2] MeV region
- 214Bi induced internal background as a proxy for IBD signal
 - Pure BiPo sample is selected w/ employing 187 days of ROff
 - Probe MC's ability to describe complex topologies



SoLi∂ collaboration July 8, 2022 10/19

Calibration with horizontal muons


Horizontal muons as the calibration tool allows to:


- Complete the relative calibration of the whole detector
- Control the time evolution of the detector response
- Extract the amount of the light leakages to the neighbouring cubes
- Provide the ballpark for the absolute energy scale calibration
 To be compared and checked with the calibration sources

SoLi∂ collaboration July 8, 2022 11/19

Relative calibration with horizontal muons

- 1 crossed cube per plane ⇒ clear posed problem
- With a track fit, $\frac{dE}{dx}$ per hit cube can be calculated
- > >1 impacted cube per plane ⇒ access to the LL!
- For the hit and adjacent cubes fibers define the fractions: $f = \frac{E_{\text{Fibre}}}{E_{\text{Fibre}}}$
- ► Fit the Kullback-Leibler divergence
- ▶ Build the $\frac{dE}{dx}$ distribution per cube [1]
- ▶ Build an average detector $\frac{dE}{dx}$ distribution [2]
- ► Set the fit result scaled by [2] as a SM element ⇒ Relative calibration!
- 10 days provides <1% statistical uncertainty</p>

12/19

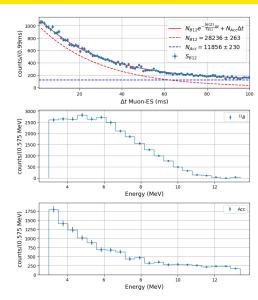
Crosschecks and validations [12B]

Reconstruction & calibration technique is checked by searching the cosmogenic bckg

$$\mu^- + ^{12}{\rm C} \rightarrow \bar{\nu_{\mu}} + ^{12}{\rm B} \rightarrow \beta^-$$

- Selection a la STEREO:
 - Stopping muon identified
 - Distance ES → muon end point ≤ 1 cube
 - ▶ Time correlation in the range of [1, 100] μ s
 - ▶ Time to another muon tracked $> 200 \mu s$
- ▶ Total energy of the event > 3 MeV to further reject background
- ► The ¹²B yield is estimated by the difference in time fit with the following model:
 - ► An exponential component with the ¹²B decay time
 - A flat accidental background contribution

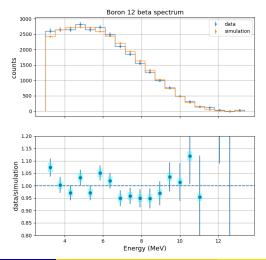
$$\Delta t ({
m Muon-ES}) = {
m N_{B_{12}}} \exp(-rac{\Delta t}{ au_{B_{12}}}) + {
m N_{\it Acc}} \Delta t$$


13/19

Crosschecks and validations [12B]

- Stats for 100 ROff days is shown
- Fit results:

$$\chi^2 / ndf = 0.95$$

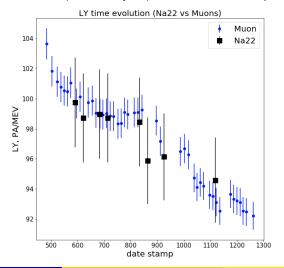

- S/B = 2.4
- Next: check the energy spectrum
- sPlot technique is used to statistically subtract the background
- Δt(Muon ES) is considered as a discriminative variable

14/19

Crosschecks and validations [12B]

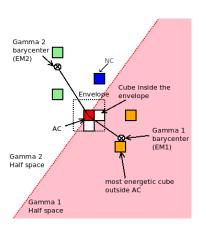
- The acquired energy spectrum is compared with Monte-Carlo simulation
- Not only the ¹²B is identified, but proper energy spectrum is obtained

SoLi∂ collaboration July 8, 2022 15/19


Absolute energy scale calibration

- Split relative and absolute calibrations is a feature of the muon calibration ⇒ various inputs can be used as an absolute energy scale
- Available options are the following:
 - From muons: $\frac{dE}{dx}$ value from Geant4 MC simulation or from PDG
 - ⇒ Disadvantages: high region of the energy spectrum
 - ► From ²²Na: 1.06 MeV CE. Method developed and crosschecked
 - ⇒ Disadvantages: low region of the energy spectrum
 - From AmBe: 4.2 MeV CE. At the heart of the desired energy spectrum. Similar to ²²Na techniques can be employed.
- ► The differences b/w possible choices are currently under investigation

SoLi∂ collaboration July 8, 2022 16/19


Absolute energy scale calibration

- Light yield time evolution comparison for the two calibrations
- First ²²Na point is scaled (increased by 3%) to match the first muon point

SoLi∂ collaboration July 8, 2022 17/19

Prospects for the analysis

- Newly implemented methods allow to fully use the high granularity of the detector:
 - Precisely define the position of the event
 - Split ionisation & annihilation energy deposits
- Open new opportunities for the bckg rejection based on the geometrical topologies analysis
 - Figure 1. Events w/ annihilation γ provide way more complicated patterns to mimic by the bckg
- Three independent analysis ongoing in parallel:
 - 2 employ splitting the detector in half-spaces based on the back-to-back γ property
 - ightharpoonup 1 which tracks γ w/ Klein–Nishina formula
- ▶ S/B of 1 is targeted for the 2γ events
 - Has been reached for the open data set! [1,2]

SoLiheta collaboration July 8, 2022 18/19

Summary and Outlook

- ▶ The novel reconstruction of the EM signal in the SoLi∂ detector has been discussed
- ▶ Recent works on the calibration of the SoLi∂ detector have been reviewed.
- Relative calibration of the cube responses at 1% level per fiber as well as the light leakages is obtained by means of horizontal muons
- This novel calibration allows to follow the evolution of the detector.
- The system matrix is constructed for 10 days of data taking
- Calibration with radioactive source are concurrently performed. To be used in the determination of the absolute energy scale
- Several successful cross-checks (e.g. identification and reconstruction of the energy spectrum of ¹²B) provide confidence in the methods employed
- ► These novel reconstruction and calibration procedures allow to maximally benefit of the spatial granularity of the SoLi∂ detector
- ► They are currently being used to finalise the selection of antineutrino candidates
- ► Stay tuned for the full Phase I data set oscillation analysis!

SoLi∂ collaboration July 8, 2022 19/19

BACKUP

SoLi∂ collaboration July 8, 2022 1/1