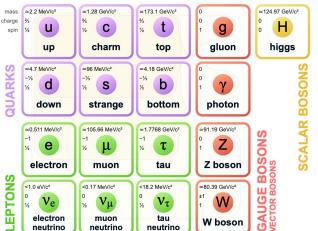


Final results from GERDA: a neutrinoless double beta decay search

Lolian Shtembari

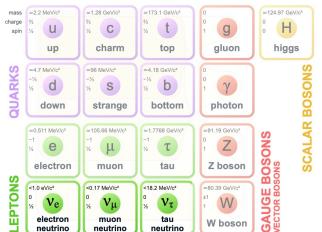
on behalf of the GERDA collaboration

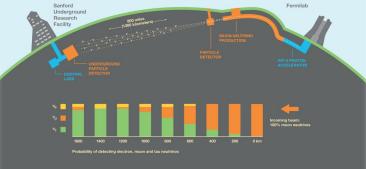
ICHEP 2022 – XLI International Conference on High Energy Physics Bologna, Italy 6-13 July 2022


Neutrinos are special

The universe has lots of matter...but not as much antimatter?

- Baryogenesis in the early universe
- no interactions in SM can produce this asymmetry
- Sakharov conditions (1967)
 - Baryon (and lepton) number violation


Neutrinos are special



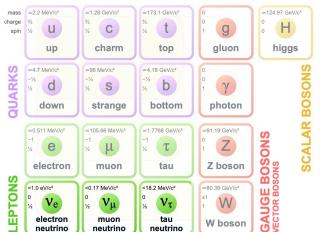
The universe has lots of matter...but not as much antimatter?

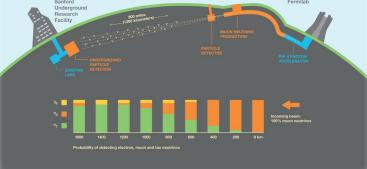
- Baryogenesis in the early universe
- no interactions in SM can produce this asymmetry
- Sakharov conditions (1967)
 - Baryon (and lepton) number violation

Deep Underground Neutrino Experiment

Neutrinos are special and don't quite fit in the SM...

- Only electrically neutral fermion and interacts only with weak force
- Neutrino oscillations observed → *Neutrinos are massive particles!* (RH neutrinos exist)
- "hierarchy" and absolute scale of mass states still unknown
- Light neutrinos: $m_{\nu} < 0.8 \text{ eV/c}^2$
 - Without finely tuned coupling to Higgs → introduce "Majorana mass" terms


Neutrinos are special



The universe has lots of matter...but not as much antimatter?

- Baryogenesis in the early universe
- no interactions in SM can produce this asymmetry
- Sakharov conditions (1967)
 - Baryon (and lepton) number violation

Deep Underground Neutrino Experiment

Neutrinos are special and don't quite fit in the SM ...

- Only electrically neutral fermion and interacts only with weak force
- Neutrino oscillations observed \rightarrow *Neutrinos are massive particles!* (RH neutrinos exist)
- "hierarchy" and absolute scale of mass states still unknown
- Light neutrinos: $m_{\nu} < 0.8 \text{ eV/c}^2$
 - Without finely tuned coupling to Higgs \rightarrow introduce "Majorana mass" terms

Majorana neutrinos would be a fundamentally new kind of elementary particle

- Equivalence between neutrinos and antineutrinos Allows CP symmetry violation and violation of $(\nu = \bar{\nu})$
 - lepton number

Search for $0\nu\beta\beta$ -decay

4

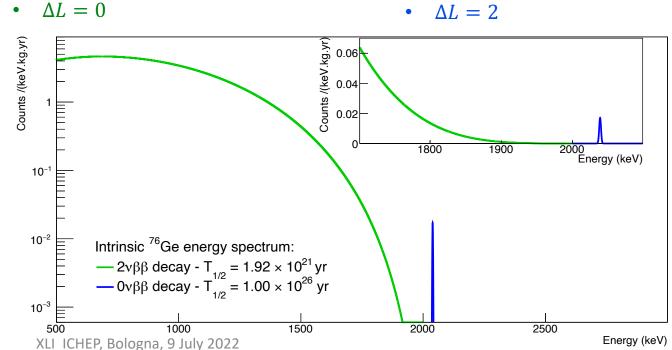
Measured in several isotopes: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe, ...

OBSERVED

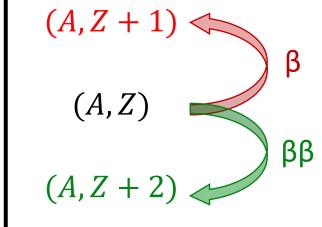
• $2\nu\beta\beta$: $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^- + 2\overline{\nu_e}$

broad continuous spectrum

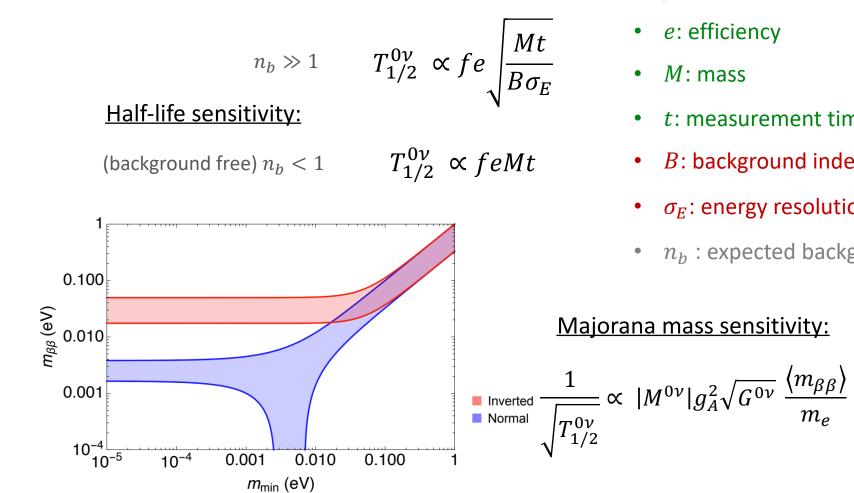
• $T_{1/2}^{0\nu} \sim \mathcal{O}(10^{21}) yr$


•

•

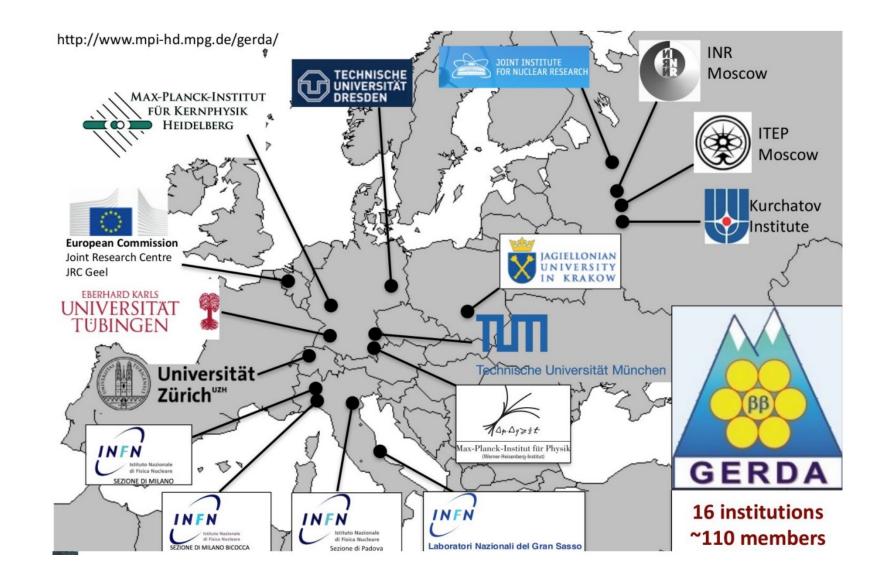

NOT YET OBSERVED

- $0\nu\beta\beta$: $^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2e^-$
- peak at $Q_{\beta\beta} = 2039 \text{ keV}$
- $T_{1/2}^{0\nu} > \mathcal{O}(10^{25}) yr$



Energy

Experimental sensitivities


- *f* : enrichment fraction
- *e*: efficiency
- t: measurement time
- *B*: background index
- σ_E : energy resolution at $Q_{\beta\beta}$
- n_b : expected background events
 - $\langle m_{\beta\beta} \rangle = m_1 |U_{e1}|^2 e^{i\rho} + m_2 |U_{e2}|^2 + m_3 |U_{e3}|^2 e^{i\sigma}$ effective neutrino mass (Majorana)

 $\mathcal{E} = Mt$: exposure

- $M^{0\nu}$: nuclear matrix element
- g_A : nucleon axial-vector coupling constant
- $G^{0\nu}$: phase space factor
- ρ, σ : Majorana phases

GERmanium Detector Array - GERDA Collaboration

GERDA Experiment: site and infrastructure

• Laboratori Nazionali del Gran Sasso (LNGS), Italy

⁷⁶Ge detectors

- 1400 m rock overburden (3500 mwe)
- Cosmic muon reduction $\mathcal{O}(10^6)$

- 590 m³ pure water tank equipped with PMTs:
 - Cherenkov light detection
- cryostat filled with Liquid Argon (LAr):
 - shielding
 - cooling
 - active veto
- Detector Array

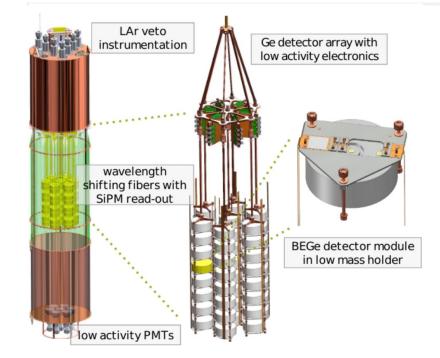
Eur. Phys. J. C 78 388 (2018)

H₂O

LAr

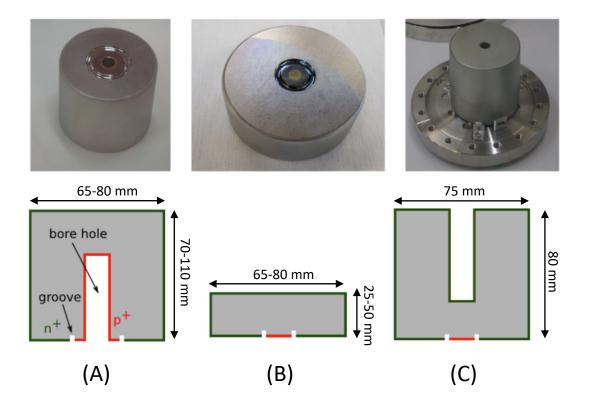
Cu shielding

• Germanium is a promising candidate since 1967


E. Fiorini et al., Phys Lett B, 25 (1967), no. 10, 602-603

- Up to 41 detectors in 6 to 7 strings covered by nylon cylinders
- high-purity bare detectors (HPGe) with enriched ⁷⁶Ge fraction

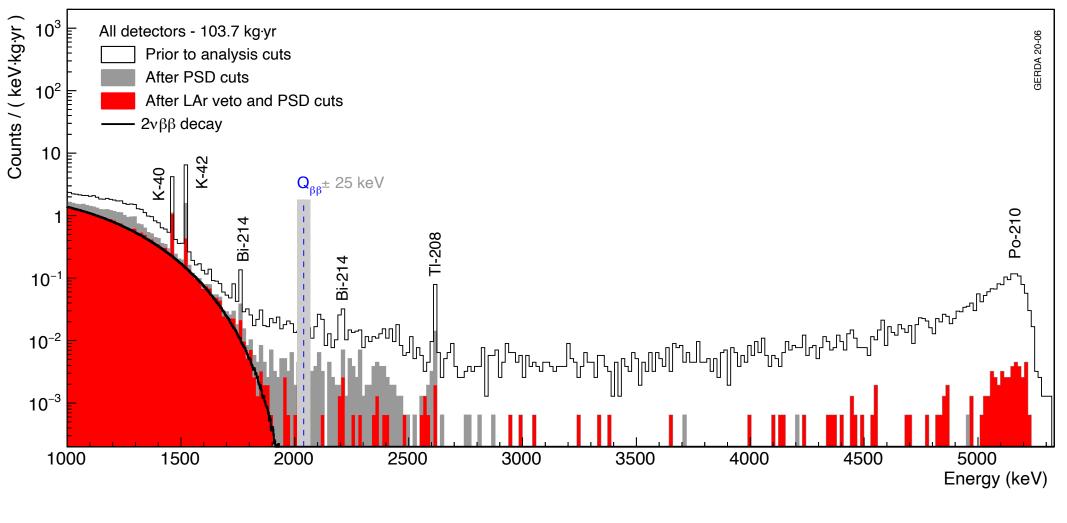
(up to ~87%)


GERDA, Astropart.Phys. 91 (2017) 15-21

- maximizes detection efficiency: source = detector
- Excellent energy resolution: $\sim 0.1\%$ FWHM at $Q_{\beta\beta}$
- lowest background per FWHM energy resolution in the field
- surrounded by fibers coated with the wavelength-shifter TPB (tetraphenyl butadiene)

GERDA

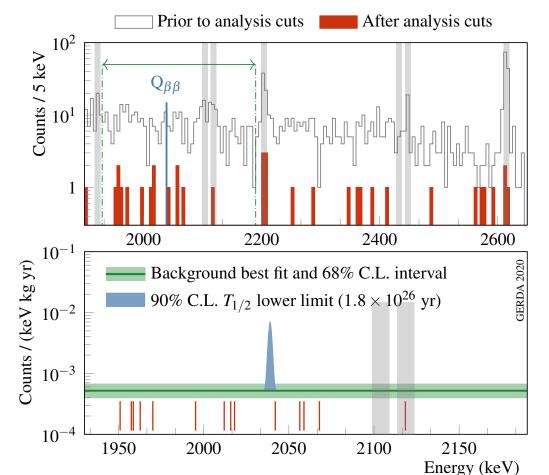
- A. Semi-coaxial (Coax): 7 6
 - typical mass 2-3 kg
- B. Broad Energy Germanium (BEGe): 30
 - average mass 670 g
 - small p+ contact at bottom: good for PSD (Pulse Shape Discrimination)
 - excellent energy resolution
- C. Inverted Coaxial (IC): 5
 - Average mass 2 kg
 - excellent energy resolution & PSD (like BEGe)



Eur. Phys. J. C. 79 11 978 (2019)

Eur. Phys. J. C, 81 6 505 (2021)

Background reduction


< 0,5 MeV: ³⁹Ar

• [0,5 - 2] MeV: 2νββ

• >4 MeV: α

The analysis proceeds as follows:

- events in the interval $Q_{\beta\beta}\pm 25~keV$ are not analysed but only stored on disk
- continuous monitoring of detectors
- freezing of analysis procedure and parameters
- blinded events are processed
- data analysis of events detected in the analysis window (1930–2190 keV) excluding the 2 gamma line regions:
 - 2104 ± 5 keV : ²⁰⁸Tl (from ²³²Th decay chain)
 - 2119 ± 5 keV : ²¹⁴Bi (from ²³⁸U decay chain)

GERDA

Data and Results PRL 125, 252502 (2020) 10-Counts (kg χ_{g} **JERDA 2020** Background best fit and 68% C.L. interval 90% C.L. $T_{1/2}$ lower limit (1.8 × 10²⁶ yr) In the analysis window we detect 13 events but we cannot claim a signal 10^{-3} Bayesian half-life limit (and sensitivity): SN COMPUT. SCI. 2, 210 (2021) 10^{-4} 1950 2000 2050 2150 2100 • Uniform signal strength $([T_{1/2}^{0\nu}]^{-1})$ prior: Energy (keV) 30 $T_{1/2}^{0\nu} > 1.4 \cdot 10^{26} \ yr$ (90% C.I.) probability 5 12 12 12 Phase-I <-- Sqrt prior Phase-I <-- Uniform prior • Uniform Majorana neutrino masses $(m_{\beta\beta})$ prior: Phase-II, Single BI <-- Phase-I <-- Sqrt prior Phase-II, Single BI <-- Phase-I <-- Uni. prior $T_{1/2}^{0\nu} > 2.3 \cdot 10^{26} \ yr$ (90% C.I.) Phase-II, Corr. BI <-- Phase-I <-- Sqrt prior Posterior 1 Phase-II, Corr. BI <-- Phase-I <-- Uni. prior Phase-II, Uncorr. BI <-- Phase-I <-- Sqrt prior Frequentist limit (and sensitivity): Phase-II, Uncorr. BI <-- Phase-I <-- Uni. prior $T_{1/2}^{0\nu} > 1.8 \cdot 10^{26} \ yr$ (90% C.L.) $0 + 10^{-3}$ 10^{-2} 10^{-1} 10^{0} 10^{1} Signal rate [normalized to $10^{-26}vr^{-1}$] Limits on effective neutrino mass: Posterior probability 2000 1000 1000 1000 2000 1000 Single BI (13 events) $|m_{\beta\beta}| < [79 - 180] meV$ Correlated BI, BEGe (7 events) Correlated BI, Coax (5 events) Correlated BI, Inv-Coax (1 event) Uncorrelated BI, BEGe (7 events) depending on the NME values at $q_A = 1.27$

- Background index for Phase-II analysis of Single B model is:

(Phase-II) $B = 5.2^{+1.6}_{-1.3} \cdot 10^{-4} \left[\frac{\text{cts}}{\text{keV} \cdot \text{kg} \cdot \text{vr}} \right]$ (68% SI)

12

Uncorrelated BI, Coax (5 events) Uncorrelated BI, Inv-Coax (1 event)

0.0030

0.0035

0.0010 0.0015 0.0020 0.0025

Phase-II Background index $[cts/keV \cdot kg \cdot yr]$

0.0000

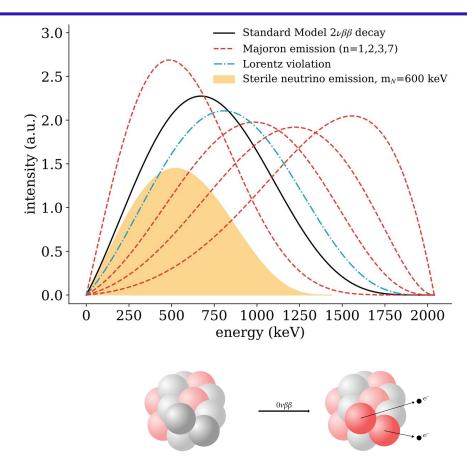
0.0005

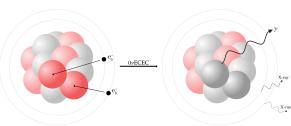
GERDA

Lolian Shtembari

XLI ICHEP, Bologna, 9 July 2022

Other physics and current studies




- Searching for other physics in the 2vββ decay:
 - Precise fit of the 2vββ spectrum
 - Estimate half-lives on potential other physics:
 - Majoron emission
 - Lorentz violation
 - Sterile neutrino emission
- Limit on the radioactive 0vECEC of ³⁶Ar
- Searches for Trinucleon Decays of ⁷⁶Ge
- Searching for Super-WIMPs

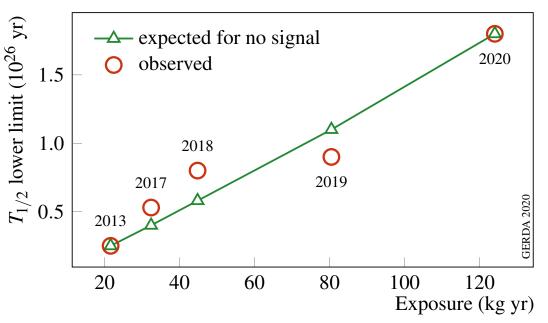
Lolian Shtembari

- search for axion-like particles (ALPs), and vector (aka dark
 - photons) super-WIMPs via their absorption in detector materials

(similar to photoelectric effect)

 0ν

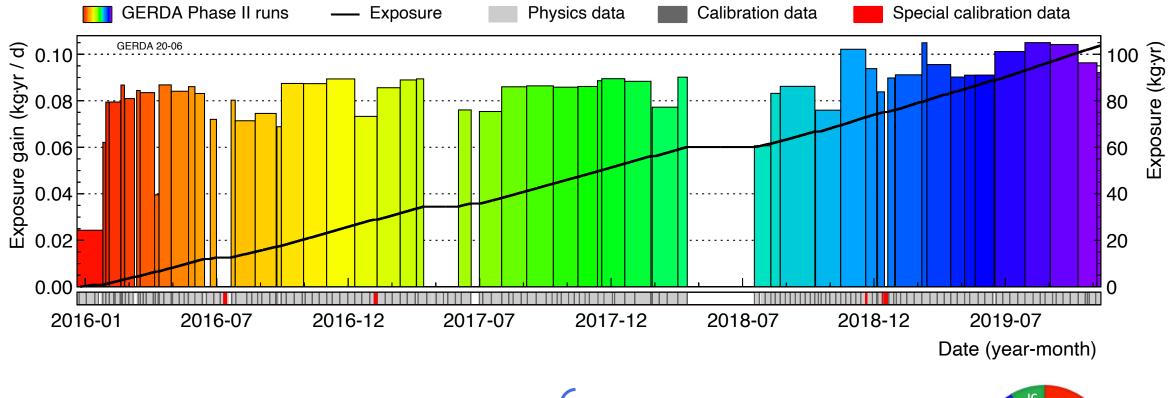
XLI ICHEP, Bologna, 9 July 2022

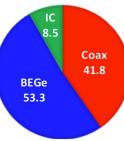

Summary

- GERDA employed an array of HPGe detectors enriched in ^{76}Ge to search for $0\nu\beta\beta$
- GERDA ended up surpassing all design goals and provides stringent constraints on the half-life of $0\nu\beta\beta$ decay
 - $T_{1/2}^{0\nu} > 1.8 \cdot 10^{26} yr$ (90% C.L.)
 - $\left|m_{\beta\beta}\right| < [79 180] meV$ depending on the NME values at $g_A = 1.27$

•
$$B = 5.2^{+1.6}_{-1.3} \cdot 10^{-4} \left[\frac{\text{cts}}{\text{keV} \cdot \text{kg} \cdot \text{yr}} \right]$$
 (68% SI)

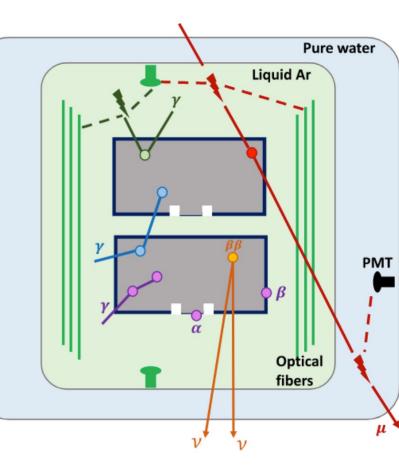
- GERDA is the only experiment to run in **background-free regime** for the entire duration of its data taking
 - most convincing for discovery
 - paved the way for




BACKUP

Data taking

- 2011 2013: Phase I, 23.5 kg yr exposure
- 2015 2019: Phase II, 103.7 kg yr exposure
- Installation of LAr veto
- 2018: upgrade with 5 IC detectors
- Operation in bkg-free regime


Analysis cuts:

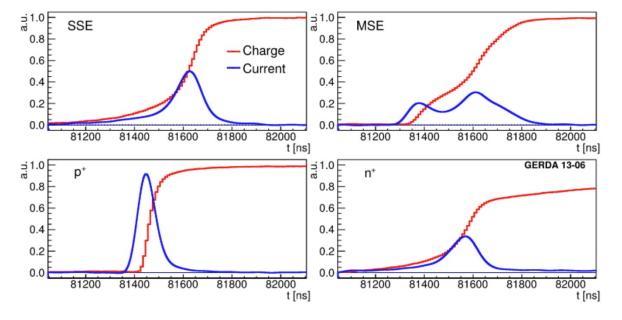
- PSD
- multiplicity/coincidence
- Lar veto
- muon veto

 $\beta\beta$ decay signal: single-site event energy deposition in a 1 mm³ volume

Signal efficiencies after cuts:

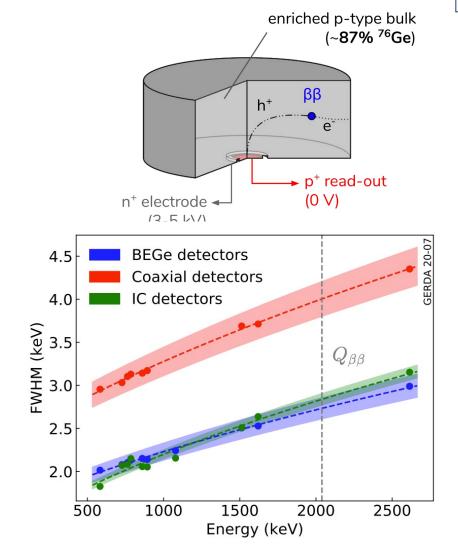
- Coax 46%
- BEGe 61%
- IC 66%

Pulse shape discrimination (PSD) for multi-site and surface α , β events


Ge detector anti-coincidence

LAr veto based on Ar scintillation light read by fibers and PMT

Muon veto based on Cherenkov light and plastic scintillator



- single-site events: signal-like
- multi-site events: induce double-peak structure
- surface α events: fast risetime, high current
- surface β events: incomplete charge collection
- rejection based on current amplitude over energy (A/E) for BEGe, IC & on artificial neural network comparing pulse shape for Coax

Eur. Phys. J. C 73 2583 (2013)

- Detectors calibrated weekly with 3 ²²⁸Th sources
- Energy shifts between calibration < 1 keV
- peak fitting algorithm to determine each detector's resolution
- Gaussian mixture models to determine resolutions per detector type
- digital shaping with "zero area cusp" (ZAC) filter

Eur. Phys. J. C 75 255 (2015)

Eur. Phys. J. C 81 682 (2021)

TABLE I. Summary of the GERDA Phase II parameters for different detector types and before and after the upgrade. The components of the total efficiency ε for $0\nu\beta\beta$ decays are reported individually. The efficiencies of muon veto and quality cuts are above 99.9% and are not shown. Energy resolutions and all $0\nu\beta\beta$ decay detection efficiencies are reported as exposure-weighted averages for each detector type and their uncertainties are given as standard deviations.

	Dec 2015–May 2018		July 2018–Nov 2019		
	Coaxial	BEGe	Coaxial	BEGe	Inverted coaxial
Number of detectors	7	30	6	30	5
Total mass	15.6 kg	20 kg	14.6 kg	20 kg	9.6 kg
Exposure \mathcal{E}	28.6 kg yr	31.5 kg yr	13.2 kg yr	21.9 kg yr	8.5 kg yr
Energy resolution at $Q_{\beta\beta}$ (FWHM)	(3.6 ± 0.2) keV	(2.9 ± 0.3) keV	$(4.9 \pm 1.4) \text{ keV}$	(2.6 ± 0.2) keV	$(2.9 \pm 0.1) \text{ keV}$
$0\nu\beta\beta$ decay detection efficiency ε :	$(46.2 \pm 5.2)\%$	$(60.5 \pm 3.3)\%$	$(47.2 \pm 5.1)\%$	$(61.1 \pm 3.9)\%$	$(66.0 \pm 1.8)\%$
Electron containment	$(91.4 \pm 1.9)\%$	$(89.7 \pm 0.5)\%$	$(92.0 \pm 0.3)\%$	$(89.3 \pm 0.6)\%$	$(91.8 \pm 0.5)\%$
⁷⁶ Ge enrichment	$(86.6 \pm 2.1)\%$	$(88.0 \pm 1.3)\%$	$(86.8 \pm 2.1)\%$	$(88.0 \pm 1.3)\%$	$(87.8 \pm 0.4)\%$
Active volume	$(86.1 \pm 5.8)\%$	$(88.7 \pm 2.2)\%$	$(87.1 \pm 5.8)\%$	$(88.7 \pm 2.1)\%$	$(92.7 \pm 1.2)\%$
Liquid argon veto	$(97.7 \pm 0.1)\%$			$(98.2 \pm 0.1)\%$	
Pulse shape discrimination	$(69.1 \pm 5.6)\%$	$(88.2 \pm 3.4)\%$	$(68.8 \pm 4.1)\%$	$(89.0 \pm 4.1)\%$	$(90.0 \pm 1.8)\%$

• closest event at 2.4 σ PRL 125, 252502 (2020)

Data partitioning

- **Partition**: period of time in which all parameters are constant
- cut data with respect to different detectors
- cut data with respect to time windows that share the same constant parameters
- background indices can be common parameters among partitions
- Each partition has its own efficiency (ϵ_k) , exposure (\mathcal{E}_k) , energy resolution $(\sigma_k = \text{FWHM}/2.35)$ and background index (B_k)
- det 1 FWHM ε_{psd} $\epsilon_{_{LAr}}$ $\epsilon_{_{Det}}$ $\sigma_{_{FWHM}}$ $\sigma_{_{\rm E}}$ σ_{PSD} det 2 FWHM $\epsilon_{_{PSD}}$ det 3 FWHM ••• run53 run54 run55 run56 run95 run93 run114

• the result is 383 partitions

Likelihood

GERDA

- Signal rate $S = 1 / T_{1/2}^{0\nu}$
- Expected number of signal events in partition k (\mathcal{E}_k exposure, ϵ_k efficiency, m_{76} molar mass):

ŀ

$$u_{s,k} = \frac{\ln 2 \mathcal{N}_A}{m_{76}} \epsilon_k \mathcal{E}_k S$$

• Expected number of background events in partition k (B_k bkg index, ΔE analysis window width):

 $\mu_{s,b} = B_k \Delta E \ \mathcal{E}_k$

• Gaussian distribution for the signal, centered at $Q_{\beta\beta}$ with a width corresponding to the energy resolution (σ_k), and a flat distribution for the background

 the hypothesis of a flat background is supported by means of a test-statistic derived from Order-Statistic, which models the distribution of spacings between statistical samples

Sensitivity vs. Exposure

- Number of signal and background counts are Poisson distributed
- Expected number of signal counts (f enrichment fraction, e efficiency, $\epsilon = f \cdot e$):

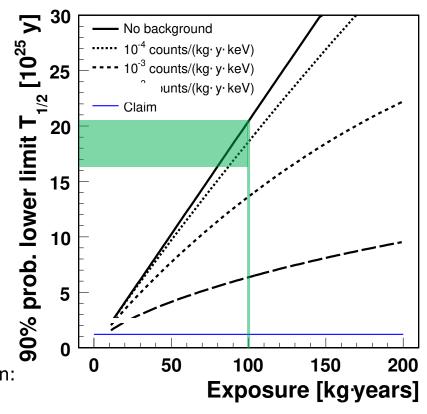
$$n_s = \frac{\ln(2) \mathcal{N}_A}{m_{76}} fe \ \mathcal{E} \ \frac{1}{T_{1/2}^{0\nu}}$$

• Expected number of background counts (around $Q_{\beta\beta}$, thus $\Delta E = \sigma_E$):

$$n_b = \mathcal{E} B \Delta E$$

• If $n_b = 0$ (background free), then $T_{1/2}^{0\nu}$ is the time needed to observe 1 signal event:

 $T_{1/2}^{0\nu} \propto fe \ \mathcal{E}$


• If $n_b \gg 1$, then we can approximate the Poisson statistics with a Gaussian distribution:

$$n_b \sim \mathcal{N} \ (\mathcal{E} B \ \Delta E, \sqrt{\mathcal{E} B \ \Delta E})$$

 $T_{1/2}^{0\nu} \propto fe \sqrt{\frac{\varepsilon}{B\Delta E}}$

• the minimal number of signal counts that can be distinguished from the background is approximately $\sqrt{n_b}$, thus:

GERDA

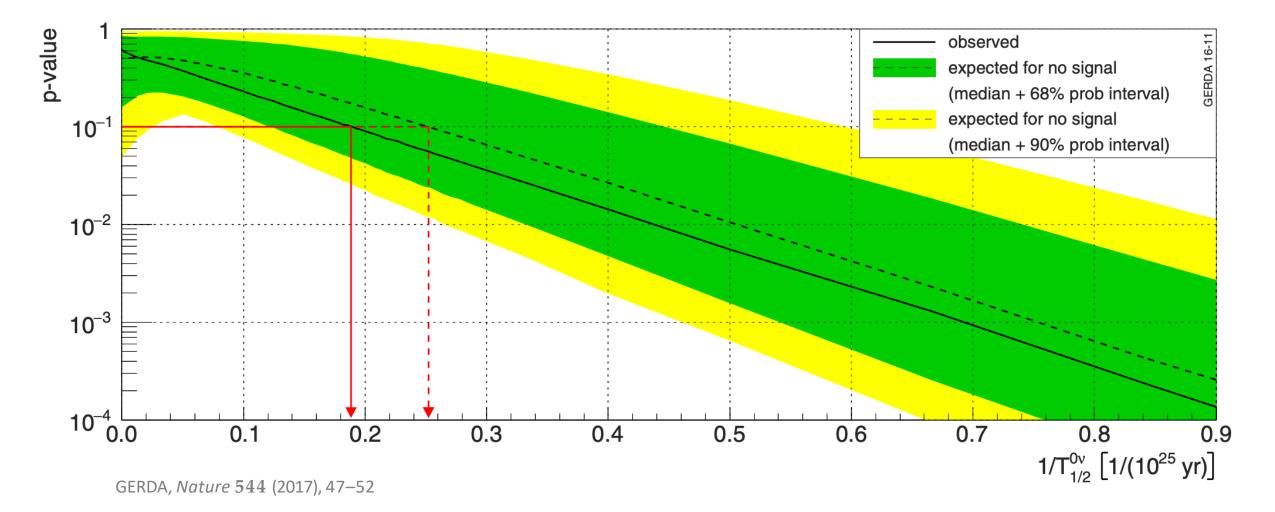
Frequentist analysis (I)

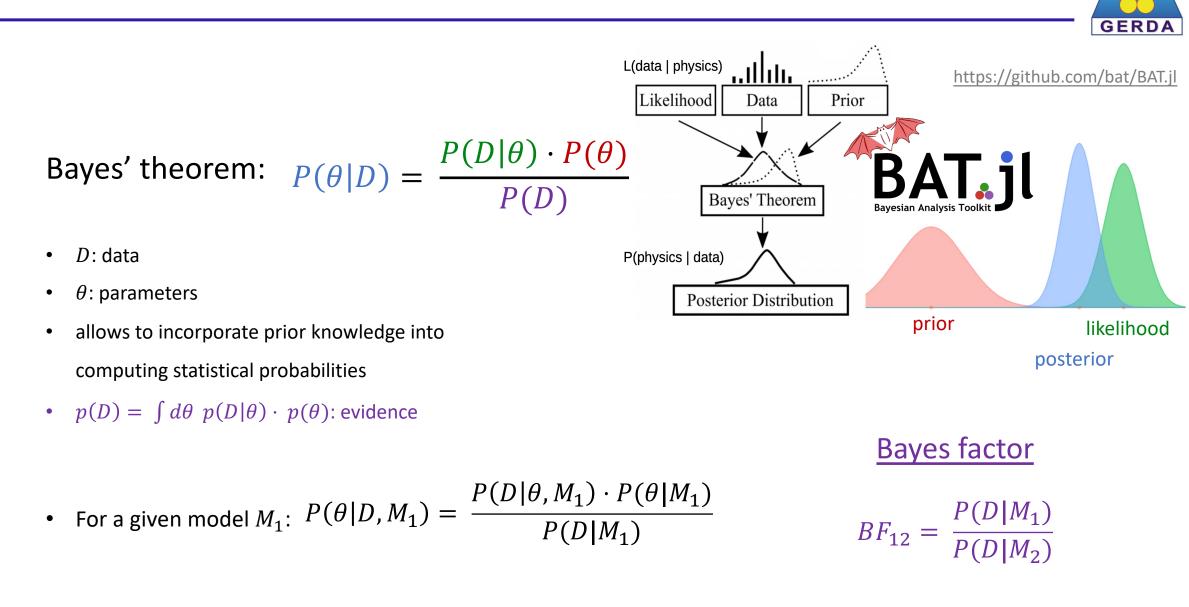
• Two sided test statistic based on the profile likelihood $\lambda(S)$:

$$t_{S} = -2\ln[\lambda(S)] = -2\ln\left[\frac{\mathcal{L}(S,\hat{B},\hat{\theta})}{\mathcal{L}(\hat{S},\hat{B},\hat{\theta})}\right]$$

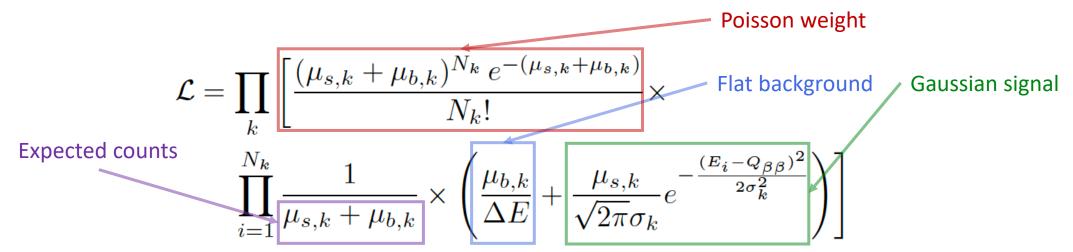
- $\hat{\hat{B}}$ and $\hat{\hat{\theta}}$ denote the value of the parameters that maximize \mathcal{L} for a fixed S
- \hat{S} , \hat{B} and $\hat{\theta}$ denote the values corresponding to the absolute maximum likelihood
- Estimate the distribution $f(t_S | S)$ using MCMC
- The p-value for data at a specific value of *S* is:

$$p_S = \int_{t_{obs}}^{\infty} f(t_S|S) d(t_S)$$


• The 90% CL is given by all S values with $p_S > 0.1$

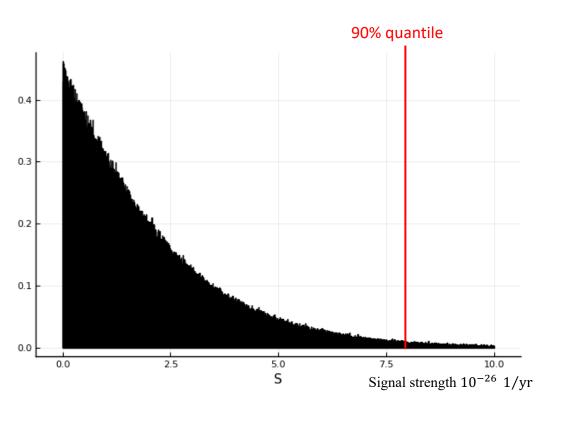


Frequentist analysis (II)



Bayesian analysis in a nutshell

Unbinned Extended Likelihood

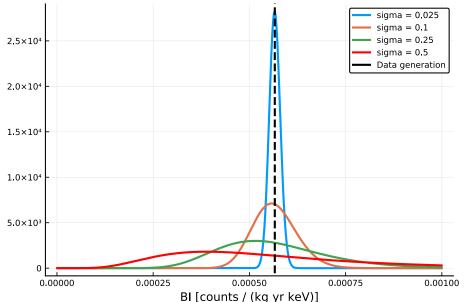

• *E_i* is the energy

GERDA, Nature 544 (2017), 47–52

- $\mu_{s,k}$ and $\mu_{b,k}$ are the expected signal and background counts respectively
- N_k is the number of events in the k-th partition
- Systematic uncertainties on E_i , ϵ_k and σ_k are included in the analysis and modelled as normal distributions
- the hypothesis of a flat background is supported by means of a test-statistic derived from Order-Statistic,
 which models the distribution of spacings between statistical samples arXiv:2008.02048

There are 2 different priors on the signal strength $S = \frac{1}{T_{1/2}^{0\nu}}$ (which ranges from 0 to 10^{-24} 1/yr):

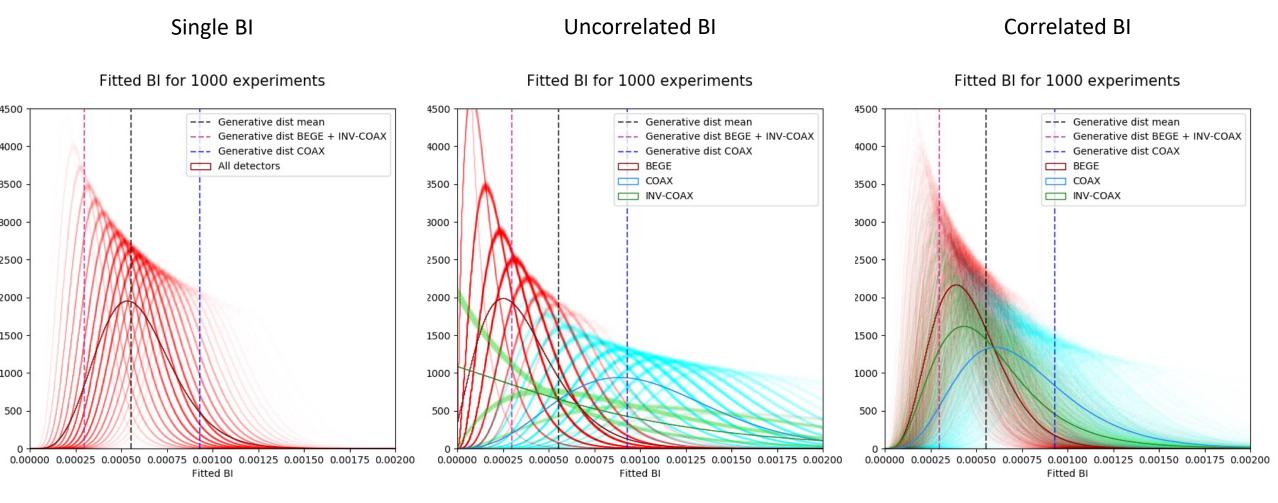
- $p(S) \sim Uniform$
 - \circ equiprobable signal strengths
- $p(S) \sim \frac{1}{\sqrt{S}}$
 - equiprobable Majorana neutrino masses $m_{\beta\beta}$
 - $S \propto m_{\beta\beta}^2$
- 1) Perform fit to Phase I data
 - $\circ~$ 61 events, 23.5 kg $\cdot~yr$ exposure
- 2) Feed posterior from Phase-I to Phase-II analysis
 - $\circ~$ 13 events, 103.7 kg $\cdot~yr$ exposure
- 3) Get limit at 90% C. I. from posterior distribution of S



XLI ICHEP, Bologna, 9 July 2022

There are 3 types of detectors: BEGe (Broad Energy Germanium), Coax (Coaxial), Inv-Coax (Inverted Coaxial) The background index (B) can be treated in 3 different ways, which gives rise to 3 different models:

- Single background index: there is only one background index for all detector types: $B \sim Uniform$
- Uncorrelated background indices: each detector type has its own independent B_i : $B_i \sim U$
- Correlated background indices: each detector type has a different B_i but they are all correlated. This implies a hierarchical model
 - $\sigma_B \sim Uniform$
 - $m_B \sim Uniform$
 - $B_i \sim LogNormal\left(\ln(m_B) \frac{\sigma_B^2}{2}, \sigma_B\right)$
- Changing the range of σ_B allows the correlated model to replicate the previous two models: smooth change
 - Small sigma ---> Single BI
 - Large sigma ---> Uncorrelated BI


 $B_i \sim Uniform$

Lolian Shtembari

29

Comparison with toy experiment

- Single B model reconstructs a larger fraction of signal events on average: stronger discovery power
- Uncorrelated B model gives on average a better half-life limit in experiments with only background events: stronger limit setting capabilities
- Correlated B model's performance is halfway between the extreme models both in discovery power and limit setting
- The (median) sensitivity of all models assuming no signal and using a uniform prior for S is

 $T_{1/2}^{0\nu} > 1.4 \cdot 10^{26} \text{ yr} (90\% \text{ C. I.})$