Spontaneous origin of CP phase in the neutrino sector

Rohan Pramanick

Department of Physics, IIT Kharagpur, Kharagpur, India.

In collaboration with Tirtha Sankar Ray and Avirup Shaw

Presented at ICHEP 2022 Date : July 7, 2022

Rohan Pramanick (IIT Kharagpur)

SCPV and ν -mass

July 7, 2022 1/9

CP violation

- CP violation is necessary to explain Baryogenesis
- CP violation in CKM matrix is not enough
- Origin of CP violation still remains unknown
- Explicit and/or Spontaneous and/or Geometric

Rohan Pramanick (IIT Kharagpur)

SCPV and ν -mass

Spontaneous CP violation

Originally proposed by T. D. Lee with two scalar doublets.

$$egin{array}{ll} \Phi
ightarrow \Phi' = oldsymbol{U} \Phi \ \mathcal{L}
ightarrow \mathcal{L}'(\Phi') = \mathcal{L}(\Phi) \end{array} egin{array}{ll} extbf{But} & \left\{ egin{array}{ll} |0
angle
ightarrow extbf{CP} |0
angle
eq |0
angle \ extbf{CP} extbf{cP} extbf{int}
ightarrow extbf{CP} |0
angle
eq |0
angle$$

Goal : Build a minimal model that incorporates the spontaneous origin of CP phase in the neutrino sector.

- Minimal in terms of field content and free parameters
- With all **real** couplings
- A single phase is generated in the EW sector
- Gets propagated in the lepton sector
- Generates a δ_{CP} in the PMNS matrix

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Neutrino mass matrix (schematically)

 $M_
u = A + B + \cdots$

$\textbf{Complex vev of triplet}: \boldsymbol{A} = \langle \Delta \rangle \in \mathcal{C}$						
$B=\mathrm{Type}\;\mathrm{I}\in\mathcal{R}\;\;\checkmark$						
$B=\mathrm{Type}\mathrm{II}\langle\Delta angle\in\mathcal{R}$						
$B=\mathrm{Type}\ \mathrm{III}\in\mathcal{R}$						

 $B = \text{Scotogenic} \in \mathcal{R}$

Complex mass matrix $M_{N_P/\Sigma/f} \in C$ $A=\operatorname{Type}\operatorname{I}M_{N_1}\in \mathcal{R} ext{ and }B=\operatorname{Type}\operatorname{I}M_{N_2}\in \mathcal{C}$ $A = \text{Type I} M_N \in \mathcal{R} \text{ and } B = \text{Scotogenic } M_f \in \mathcal{C}$ $A = \text{Type I} M_N \in \mathcal{R} \text{ and } B = \text{Type III} M_\Sigma \in \mathcal{C}$ $A = \text{Type II } \langle \Delta \rangle \in \mathcal{R} \text{ and } B = \text{Type I } M_N \in \mathcal{C}$ $A = \text{Type II} \langle \Delta \rangle \in \mathcal{R} \text{ and } B = \text{Scotogenic } M_f \in \mathcal{C}$ $A = \text{Type II} \langle \Delta \rangle \in \mathcal{R} \text{ and } B = \text{Type III} M_{\Sigma} \in \mathcal{C}$ $A = \text{Type III} M_{\Sigma} \in \mathcal{R} \text{ and } B = \text{Type I} M_N \in \mathcal{C}$ $A = \text{Type III} M_{\Sigma} \in \mathcal{R} \text{ and } B = \text{Scotogenic} M_f \in \mathcal{C}$ $A = \text{Type III} M_{\Sigma_1} \in \mathcal{R} \text{ and } B = \text{Type III} M_{\Sigma} \in \mathcal{C}$ $A = ext{Scotogenic} M_f \in \mathcal{R} ext{ and } B = ext{Type I} M_N \in \mathcal{C}$ $A = ext{Scotogenic} M_{f_1} \in \mathcal{R} ext{and} B = ext{Scotogenic} M_{f_2} \in \mathcal{C}$ $A = \text{Scotogenic } M_f \in \mathcal{R} \text{ and } B = \text{Type III } M_{\Sigma} \in \mathcal{C}$

< 口 > < 同 >

Rohan Pramanick (IIT Kharagpur)

SCPV and ν -mass

321 model

Extend the SM by one triplet Δ , one singlet σ and one N_R

Rohan Pramanick (IIT Kharagpur)

SCPV and $\nu\text{-mass}$

↓ ロ ト ◆ 母 ト ◆ 玉 ト ミ シ へ で July 7, 2022 5/9

321 model

Extend the SM by one triplet Δ , one singlet σ and one N_R

- σ obtains a complex vev with phase θ_{σ}
 - \rightarrow propagation of θ_σ into a complex triplet vev with phase θ_Δ

 $\rightarrow \Delta$ generates complex Yukawa couplings with neutrinos

Sac

<ロト < 同 ト < 豆 ト < 豆 ト : 三

321 model

Extend the SM by one triplet Δ , one singlet σ and one N_R

- σ obtains a complex vev with phase θ_σ
 - \rightarrow propagation of θ_σ into a complex triplet vev with phase θ_Δ

 $\rightarrow \Delta$ generates complex Yukawa couplings with neutrinos

- σ couples with N_R
 - ightarrow give rise to complex mass matrix M_R with phase $heta_R$

 $o heta_\Delta
eq - heta_R$ has to be satisfied

Effective phase $(\theta_{\Delta} + \theta_R)$ in the M_{ν} generate the CP violating phase in the PMNS matrix.

Rohan Pramanick (IIT Kharagpur)

July 7, 2022 5/9

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scalar potential

$$V(\sigma,H,\Delta) = V_{\mathrm{SM}} + V_{\sigma} + V_{\phi} + V_{\sigma H} + V_{\sigma \Delta} + V_{\sigma H \Delta} + V_{\Delta} + V_{H \Delta} + V_{\mu}$$

$$V_{\sigma} = \underbrace{-m_{\sigma}^{2}(\sigma^{*}\sigma) + \lambda_{\sigma}(\sigma^{*}\sigma)^{2}}_{\sigma \text{ acquires a vev } v_{\sigma}}$$

$$V_{\phi} = m_{\sigma}^{\prime 2}(\sigma^{2} + \sigma^{*2}) + \lambda_{\sigma3}(\sigma^{3} + \sigma^{*3}) + \lambda_{\sigma3}^{\prime}(\sigma^{*}\sigma)(\sigma + \sigma^{*}) + \frac{\lambda_{\sigma4}(\sigma^{4} + \sigma^{*4}) + \lambda_{\sigma4}^{\prime}(\sigma^{*}\sigma)(\sigma^{2} + \sigma^{*2})}{\text{generates complex phase } \theta_{\sigma}o_{f}\sigma \text{ vev}}$$

$$V_{\sigma H} = \left[\lambda_{\sigma H}(\sigma^{*}\sigma) + \lambda_{\sigma H}^{\prime}(\sigma^{2} + \sigma^{*2}) + \lambda_{\sigma H1}^{\prime}(\sigma + \sigma^{*})\right](H^{\dagger}H)$$

$$V_{\sigma\Delta} = \left[\lambda_{\sigma\Delta}(\sigma^{*}\sigma) + \lambda_{\sigma\Delta}^{\prime}(\sigma^{2} + \sigma^{*2}) + \lambda_{\sigma\Delta1}^{\prime}(\sigma + \sigma^{*})\right]\text{Tr}(\Delta^{\dagger}\Delta)$$

$$V_{\sigma H\Delta} = \underbrace{(\lambda_{\sigma H\Delta}\sigma + \lambda_{\sigma H\Delta}^{\prime}\sigma^{*})H^{\dagger}i\sigma_{2}\Delta^{\dagger}H + \text{ h.c.}}_{\text{propagation of } \theta_{\sigma} \text{ to } \theta_{\Delta}}$$

$$V_{\mu} = \underbrace{\mu H^{\dagger}i\tau_{2}\Delta^{\dagger}H + \text{ h.c.}}_{\Delta \text{ acquires a vev } v_{\Delta}}$$

Rohan Pramanick (IIT Kharagpur)

SCPV and $\nu\text{-mass}$

돌▶◀≣▶ ≣ ∽Qペ July 7, 2022 6/9

< □ ▶ < 同

Yukawa sector and ν -mass matrix

$$egin{array}{rcl} -\mathcal{L}_Y &=& rac{1}{2} \; Y_\Delta \; L^\intercal \mathcal{C} i au_2 \Delta \; L \; + \; Y_
u \overline{L} \widetilde{H} N_R \; + \; ig(oldsymbol{y_R} \sigma + oldsymbol{y_R} \sigma^st ig) \; \overline{N_R} \; N_R^{\,\, c} \ &+\; Y_l \overline{L} H e_R \; + \; + rac{1}{2} M_R^0 \overline{N_R} \; N_R^c \; + \; ext{h.c.} \end{array}$$

$$egin{aligned} M_
u = Y_\Delta \; rac{v_\Delta}{\sqrt{2}} \; e^{i(heta_\Delta + heta_R)} \; - \; rac{v_H^2}{2|M_R|} \; Y_
u \; Y_
u^{\intercal} \end{aligned}$$

Rohan Pramanick (IIT Kharagpur)

SCPV and $\nu\text{-mass}$

돌▶◀돌▶ 돌 ∽Q July 7, 2022 7/9

< □ > < 同 > <

Yukawa sector and ν -mass matrix

$$egin{array}{rcl} -\mathcal{L}_Y &=& rac{1}{2} \ Y_\Delta \ L^{ extsf{T}} \mathcal{C} i au_2 \Delta \ L \ + \ Y_
u \overline{L} \widetilde{H} N_R \ + \ ig(oldsymbol{y_R} \sigma + oldsymbol{\widetilde{y_R}} \sigma^st ig) \ \overline{N_R} \ oldsymbol{N_R} \ N_R^c \ + \ Y_l \overline{L} H e_R \ + \ + rac{1}{2} M_R^0 \overline{N_R} \ N_R^c \ + \ extsf{h.c.} \end{array}$$

$$M_
u = Y_\Delta \; rac{v_\Delta}{\sqrt{2}} \; e^{i(heta_\Delta + heta_R)} \; - \; rac{v_H^2}{2|M_R|} \; Y_
u \; Y_
u^{ extsf{T}}$$

Imposition of discrete symmetries

	Charges of the fields			Allowed couplings		
	σ	Δ	N_R, L, e_R	V_{ϕ}	$V_{\sigma H\Delta}$	Yukawa
$\checkmark Z_3: \omega^3=1$	ω	ω	ω	$\lambda_{\sigma 3}$	$\lambda_{\sigma H\Delta}$	$Y_{\Delta}, \widetilde{\mathbf{y_R}}, Y_{ u}, Y_l$
$Z_8:\omega^8=1$	ω^2	ω^2	ω^3	$\lambda_{\sigma 4}$	$\lambda_{\sigma H\Delta}$	$Y_{\Delta}, \widetilde{\mathbf{y_R}}, Y_{ u}, Y_l$

With Z_3 symmetry unbroken : $\theta_{\Delta} = -\theta_R = \frac{\pi}{6}$ With $V_{\mu} = \mu H^{\dagger} i \tau_2 \Delta^{\dagger} H + \text{ h.c. } \leftarrow \text{ a soft breaking term}$

Rohan Pramanick (IIT Kharagpur)

SCPV and ν -mass

Neutrino oscillation data numerical scan and results

Sac

8/9

Rohan Pramanick (IIT Kharagpur)

Takeaways ...

- A minimal model in terms of field content which can account for a CP violating phase δ_{CP} in the neutrino sector.
- The origin of δ_{CP} lies in the spontaneous breaking of CP symmetry in the EW sector and successfully propagated to the neutrino sector.
- Imposition of certain (softly broken) discrete symmetries can result in more minimalistic scenarios.
- Leaves enough room to accommodate DM with next-to-minimal field content and imposing a remnant symmetry after spontaneous breaking.
- **Textures of neutrino mass matrix** can also be interesting to investigate in this underlying framework.

Sac

< □ > < 同 > < 三 > < 三 >

Takeaways ...

- A minimal model in terms of field content which can account for a CP violating phase δ_{CP} in the neutrino sector.
- The origin of δ_{CP} lies in the spontaneous breaking of CP symmetry in the EW sector and successfully propagated to the neutrino sector.
- Imposition of certain (softly broken) discrete symmetries can result in more minimalistic scenarios.
- Leaves enough room to accommodate DM with next-to-minimal field content and imposing a remnant symmetry after spontaneous breaking.
- **Textures of neutrino mass matrix** can also be interesting to investigate in this underlying framework.

Chank You!

4 □ > 4 同 > 4 Ξ > 4 Ξ >

Sac