

Neutrino upscattering to HNLs as an explanation of MB LEE ICHEP '22

Jaime Hoefken Zink

In collaboration with A. Abdullahi, M. Hostert, D. Massaro, S. Pascoli

08/07/2022

This project has received funding / support from the European Union's Horizon 2020 research and inno-

vation programme under the Marie Skłodowska -Curie grant agreement No 860881-HIDDeN.

Anomaly: MiniBooNE Low Energy Excess

Neutrino upscattering to HNLs as an explanation of MB

> Jaime Hoefken Zink

Problem: Anomaly

Jark Pho Model

Simulation

Anomaly: possible solutions

Topology	Model	Diagram	Signal
single γ	Transition magnetic moment	ν _μ μ _{ετ} N γ	$N \to \nu \gamma$
	neutrino-induced inverse-Primakoff scattering	Via S Y	$a^* + A \to \gamma A$
e^+e^-	upscattering to N	$\nu_{\mu} = N$ Z e^{+} e^{-}	$N \to \psi_{\rm inv} e^+ e^-$
	bremsstrahlung of light Z^\prime		$N^* \rightarrow \nu(Z' \rightarrow e^+e^-)$
	neutrino-induced Z^\prime fusion	ν _μ ν _{le} ε ⁺	$Z'^*Z'^* \to (S \to e^+e^-)$
	neutrino-induced inverse-Primakoff scattering to Z'	V _µ V _{bes} e^+	$S^*\gamma^* \to (Z' \to e^+e^-)$
27	neutrino-induced Z^{\prime} fusion	Z'A S AAA Y	$Z^{\prime *}Z^{\prime *} \rightarrow (S \rightarrow e^+e^-)$

Neutrino upscattering to HNLs as an explanation of MB LEE

> Jaime Hoefken Zink

Problem: Anomaly

Aodel

Simulation

esuits

Portals

Dark photon model:

- 1. $U(1)_{dark}$ extension
- 2. dark Higgs singlet
- 3. ν_S and ν_D

Neutrino upscattering to HNLs as an explanation of MB

> Jaime Hoefken Zink

Problem: Anomaly

Dark Photon Model

oimulation

Lagrangian

$$\begin{split} \mathcal{L} = & \mathcal{L}_{\mathrm{SM}} + \overline{\nu}_{D} i \not D^{\times} \nu_{D} \\ & + (D_{\mu}^{\times} \Phi)^{\dagger} (D^{\times \mu} \Phi) - V(\Phi, H) \\ & - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sin \chi}{2} B_{\mu\nu} X^{\mu\nu} \\ & + \overline{N} i \not \partial N - [y_{\nu}^{\alpha} (\overline{L}_{\alpha} \cdot \widetilde{H}) N^{C} + \frac{\mu'}{2} \overline{N} N^{C} + y_{N} \overline{N} \nu_{D}^{C} \Phi + \text{h.c.}] \end{split}$$

Neutrino upscattering to HNLs as an explanation of MB LEE

> Jaime Hoefken Zink

Problem: Anomaly

Dark Photon Model

imulation

$$\mathscr{L} \subset \epsilon e Z'_{\mu} J^{\mu}_{\mathrm{EM}} + g_D U_{Di} U^*_{Dj} Z'_{\mu} (i \overline{\nu}_i \partial \!\!\!/ \nu_j)$$
 (1)

Neutrino Mixing

$$\mathcal{L}_{\text{mass}}^{\nu} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_{\alpha}} & \overline{\mathbf{N}} & \overline{\nu_{D}} \end{pmatrix} \begin{pmatrix} 0_{3\times3} & m_{D}^{\text{T}} & 0\\ m_{D} & \mu' & \Lambda^{\text{T}}\\ 0 & \Lambda & 0 \end{pmatrix} \begin{pmatrix} \nu_{\alpha}\\ \mathbf{N}^{C}\\ \nu_{D}^{C} \end{pmatrix}$$
(2)

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ N^{C} \\ \nu_{D}^{C} \end{pmatrix} \xrightarrow{\text{From flavor to}} \begin{array}{c} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ N_{4} \\ N_{5} \end{pmatrix}$$

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Photon Model

imulation

MiniBooNE detector

► **Material**: pure mineral oil (*CH*₂) in spherical shape (radius: 6.1 m)

Baseline: 541 m

Mean energy: 800 MeV

Beam: ν_{μ} , $\bar{\nu}_{\mu}$ (mainly), from BNB

Peaks: 600 MeV (ν_{μ}) , 400 MeV $(\bar{\nu}_{\mu})$

Detection: Cherenkov, PMTs

Neutrino upscattering to HNLs as an explanation of MB LEE

> Jaime Hoefken Zink

Problem: Anomaly

Dark Photon Model

Simulation

Misreconstruction at MiniBooNE

Condition: $< 13^{\circ}$ or $E_{\nu} < 0.03$ GeV

Neutrino upscattering to HNLs as an explanation of MB

Jaime Hoefken Zink

Problem: Anomaly

Dark Photon Model

Simulation

Simulation and Fitting

DarkNews

$$-2 \ln L = \sum_{i,j} (D_i - P_i) M_{ij}^{-1} (D_j - P_j) + \ln \det M$$

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Pho Model

Simulation

3+1

Best Fit: $m_{Z'} = 111.7 \text{MeV}, m_4 = 186 \text{MeV},$

$$\chi^2_{\rm red}{=}1.255,\;|U_{\mu 4}^{\rm max}|{=}10^{-3},\;\epsilon{=}8\times 10^{-4}$$

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Pho Model

Simulation

3+1 best fit

Best fit for E_v, MiniBooNE, 3+1, m_z=111.7 MeV, m₄=186 MeV, $\epsilon = 8 \times 10^{-4}$, $|U_{u,4}^{max}| = 0.001$

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Pho Model

Simulation

Signal efficiency

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Pho Model

Simulation

3+2

Best Fit: m_{Z_1} =1.25GeV, m_5 =107.5MeV,

 $m_4 = 72.07 \text{MeV},$

$$\chi_{\rm red}^2 = 0.91$$
, $|U_{u5(4)}^{\rm max}| = 10^{-3}$, $\epsilon = 10^{-2}$

N₃ N₄ e e

Neutrino upscattering to HNLs as an explanation of MB LEE

> Jaime Hoefken Zink

Problem: Anomaly

Jark Phot Model

Simulation

3+2 best fit

Best fit for E_{v} , MiniBooNE, 3+2, m_{y} = 1.25 GeV, m_{g} = 107.5 MeV, m_{d} = 72.07 MeV, ϵ = 10°2, $|U_{u,d}^{max}|$ = 0.001

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Pho Model

Simulation

3+2 benchmark point

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Pho Model

Simulation

Couplings vs mass, 3+2

Neutrino upscattering to HNLs as an explanation of MB LEE

Jaime Hoefken Zink

Problem: Anomaly

Dark Phot Model

oimulation

Results

- The 3+2 dark sector model can explain MB LEE in the off-shell decay regime of the HNL
- 2. It is a simple model with small number of parameters
- 3. The SBN program will be able to test it
- 4. It is not so constrained as other models, such as 3+1 DS

THANK YOU!

Limits for $U_{\mu N}$

Neutrino upscattering to HNLs as an explanation of MB LEE

> Jaime Hoefken Zink

Problem: Anomaly

Dark Pho Model

Simulation