Marco Drewes, Université catholique de Louvain

Heavy neutrino production at the FCC-ee: Dirac or Majorana?

For the informal working group Long-lived particles at the FCC-ee Jul 7, 2022 ICHEP 2022

Bologna

Heavy Neutral Leptons (HNLs)

Why should we search for HNLs?

- HNLs represent one of the renormalisable "portals" to a BSM sector (e.g. "dark sector")
- Predicted by many extensions of the SM (left-right-symmetry, SO(10) GUT, ...)
- Can address various shortcomings of the SM: e.g. MaD <u>1303.6912</u>, Abdullahi et al <u>2203.08039</u>
 - Neutrino masses: seesaw mechanism
 - Baryogenesis via leptogenesis
 - Dark matter
 - Oscillation anomalies
 - • • •
- Low scale seesaw models exist and are testable at colliders

e,.g. Deppisch et al 1502.06541, Cai et al 1711.02180, Argawal et al 2102.12143, Abdullahi et al 2203.08039

Why should we care if they are Dirac or Majorana (or something in between)?

- Symmetries of nature
- Identify underlying neutrino mass model
- Connection to baryogenesis/leptogenesis

Heavy Neutral Leptons (HNLs)

Common phenomenological description:

$$\mathcal{L} \supset -\frac{m_W}{v} \overline{N} \theta^*_{\alpha} \gamma^{\mu} e_{L\alpha} W^+_{\mu} - \frac{m_Z}{\sqrt{2}v} \overline{N} \theta^*_{\alpha} \gamma^{\mu} \nu_{L\alpha} Z_{\mu} - \frac{M}{v} \theta_{\alpha} h \overline{\nu_L}_{\alpha} N + \text{h.c.}$$

- One flavour of HNLs *N*
- Couples to SM only through mixing θ_a with SM neutrinos, where $a = e, \mu, \tau$
- Model with five parameters : M, θe , $\theta \mu$, $\theta \tau$, and $R \mu$.
- *R*^{ll} is ratio of lepton number violating (LNV) to lepton number conserving (LNC) *N* decays; *R*^{ll} = 1 for Majorana *N* and *R*^{ll} = 0 for Dirac *N*.

This is not a realistic model of neutrino mass, but can effectively capture the pheno of realistic models with suitable choices of : M, θe , $\theta \mu$, $\theta \tau$, $R \mu$.

Why Search with FCC-ee?

LNV at Lepton Colliders

- Largest event numbers: displaced vertices in Z-pole run Blondel et al <u>1411.5230</u>
- Neutrino in final state unobservable
- Rely on indirect methods 2) 4)
- 4-momentum of *N* can still be fully reconstructed

How to practically distinguish Dirac from Majorana N?

- 1) Direct observation of LNV in fully reconstructed final state
- 2) Angular distribution of final state particles
- 3) Polarisation of final state particles
- 4) Lifetime of N

LNV at Lepton Colliders

Z-bosons are polarised due to P-violation of weak interaction: $g_R = 2\sin^2\theta_W$ $g_L = (1 - 2\sin^2\theta_W)$ $P_Z = \frac{(g_R^2 - g_L^2)}{(g_L^2 + g_R^2)} \simeq -0.15.$

- Chiral nature of weak interaction correlates charge, spin, and e.g. Blondel et al <u>2105.06576</u> momenta of observable final state particles to spin of initial Z-boson
- This correlation depends on whether HNLs are Dirac or Majorana

Observables:

- Forward-backward asymmetry of charged leptons: vanishes in Majorana case, is proportional to Z-polarisation in Dirac case
- Energy distribution of charged leptons: Dirac N and anti-N are highly polarised, while Majorana H are only mildly polarised, leading to different charged lepton spectra

Forward-Backward Asymmetry

- Forward-backward asymmetry ~10%
- Needs hundreds of events for 2σ exclusion
- Estimate: doable for $U^2 > 10^{-9}$ at FCC-ee

Simulated Angular Distribution

Simulation:

MadGraph5_aMC@NLO with HeavyN / HeavyN_Dirac UFO Pythia v8.303 DELPHES v3.4.2 with IDEA detector card

Majorana $N: e^+e^- \to Z \to N\nu_e + N\overline{\nu_e}$, with $N \to e^+e^-\nu_e + e^+e^-\overline{\nu_e}$, **Dirac** $N: e^+e^- \to Z \to N\overline{\nu_e} + \overline{N}\nu_e$, with $N(\overline{N}) \to e^+e^-\nu_e$ ($\overline{\nu_e}$),

Simulated Angular Distribution

Majorana $N: e^+e^- \to Z \to N\nu_e + N\overline{\nu_e}$, with $N \to e^+e^-\nu_e + e^+e^-\overline{\nu_e}$, **Dirac** $N: e^+e^- \to Z \to N\overline{\nu_e} + \overline{N}\nu_e$, with $N(\overline{N}) \to e^+e^-\nu_e$ ($\overline{\nu_e}$),

HNL Polarisation

- **Dirac** N and anti-N *individually* are highly polarised, can only decay into lepton or anti-lepton, respectively
- Majorana N are only mildly polarised and decay into leptons of either charge

Polarisation Impact on Lepton Spectrum

- **Dirac** N and anti-N *individually* are highly polarised, can only decay into lepton or anti-lepton, respectively
- Majorana N are only mildly polarised and decay into leptons of either charge
- Lepton spectrum in HNL decay depends on polariations, e.g. decay into pion+lepton:

$$\frac{1}{\Gamma(\ell^{\pm})} \frac{\mathrm{d}\Gamma(\ell^{\pm})}{\mathrm{d}E_{\ell}} = \frac{4}{\left(1 - \frac{M^2}{m_Z^2}\right)^2} \left[\frac{(1 \mp P)}{2} - \frac{M^2}{m_Z^2} \frac{(1 \pm P)}{2} \pm 2P \frac{E_{\ell}}{m_Z}\right]_{\text{Blondel et al } 2105.06576}$$

Constraining R^{II} from HNL Lifetime

• HNL production cross section is same for Dirac and Majorana:

$$BR(Z \to \nu N) = \frac{2}{3} |U_N|^2 BR(Z \to \text{invisible}) \left(1 + \frac{m_N^2}{2m_Z^2}\right) \left(1 - \frac{m_N^2}{m_Z^2}\right)$$

• HNL decay rate differs:
Dirac: :
$$C_{MD} = 1$$

Majorana: $C_{MD} = 2$
 $\Gamma_N = \frac{1}{c\tau_N} \simeq C_0 \frac{C_{MD}}{U_N} |U_N|^2 \left(\frac{m_N}{50 \text{GeV}}\right)^5 \times \left(\frac{3.10^9}{1 \text{ cm}}\right)$

- HNL mass extracted from full 4-momentum reconstruction or from time-of-flight
- Extract Ua² from total # decays , CMD from # decays between displacement lo, l1

$$N_{\rm obs} \simeq L \sigma_N \left[\exp \left(-\frac{l_0}{\lambda_N} \right) - \exp \left(-\frac{l_1}{\lambda_N} \right) \right]$$

$$\lambda_N = \beta \gamma / \Gamma_N \quad \beta \gamma = (m_Z^2 - M^2) / (2m_Z M)$$

 Caveat: Dirac-HNL may be "faked" by pair of Majorana HNLs

The Seesaw Mechanism (type I)

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{\nu}_R \partial\!\!\!/ \nu_R - \bar{L}_L F \nu_R \tilde{H} - \tilde{H}^\dagger \bar{\nu}_R F^\dagger L$$
$$-\frac{1}{2} (\bar{\nu^c}_R M_M \nu_R + \bar{\nu}_R M_M^\dagger \nu_R^c)$$

massive SM neutrinos ≤ #RH neutrino flavours

- minimal model with $m_{\text{lightest}} = 0$ has two RHN
 - if all SM neutrinos are massive, three RHN flavours are needed

three light neutrinos mostly "active" SU(2) doublet $\nu \simeq U_{\nu}(\nu_L + \theta \nu_R^c)$ with masses $m_{\nu} \simeq \theta M_M \theta^T = v^2 F M_M^{-1} F^T$

three heavy mostly singlet neutrinos $N \simeq \nu_R + \theta^T \nu_L^c$ with masses $M_N \simeq M_M$

Minkowski 79, Gell-Mann/Ramond/Slansky 79, Mohapatra/Senjanovic 79, Yanagida 80, Schechter/Valle 80

Neutrino masses vs collider searches

neutrino masses are small (sub eV) $m_{\nu}^{\text{tree}} = -v^2 F M_M^{-1} F^T = -\theta M_M \theta^T$.

 \succ Suggests that active-sterile mixing angle θ must be small

colliders rely on branching ratio $\sigma \sim \theta$ \succ mixing angle θ must be sizeable approximate B-L conservation
Shaposhnikov <u>0605047</u> Kersten/Smirnov <u>0705.3221</u>
HNLs come in pairs with quasi degenerate masses and Yukawas
This *symmetry protected type-I seesaw* resembles pheno of inverse seesaw, linear seesaw, etc.

$$M_M = \begin{pmatrix} M(1-\mu) & 0\\ 0 & M(1+\mu) \end{pmatrix}$$
$$F = \begin{pmatrix} F_e(1+\epsilon_e) & iF_e(1-\epsilon_e)\\ F_\mu(1+\epsilon_\mu) & iF_\mu(1-\epsilon_\mu)\\ F_\tau(1+\epsilon_\tau) & iF_\tau(1-\epsilon_\tau) \end{pmatrix}$$

Majorana nature of HNLs: Can LNV decay be observed?

B-L symmetry: destructive interference amongst different HNL flavours

But: B-L is broken to generate neutrino mass. Is this enough??? In colliders:

HNL oscillations in detector can destroy coherence and make LNV observable!

• Quasi-degenerate HNLs kinmeatically indistinguishable, behave like one particle with non-integer *R*11!

e.g. Anamiati et al 1607.05641

$$\mathcal{R}_{\ell\ell} = \frac{\Delta M_{\rm phys}^2}{2\Gamma_N^2 + \Delta M_{\rm phys}^2}$$

• Cases *Rll* = 0 and *Rll* = 1 nevertheless represent useful benchmarks

MaD et al 2207.02742

cf also 1409.4265, 1505.04749, 1605.01123, 1709.06553, 1703.01934, 1709.03797, 1805.00070, 1810.07210, 1905.03097, 1904.05367, 2012.05763

Majorana nature of HNLs: Can LNV decay be observed?

B-L symmetry: destructive interference amongst different HNL flavours

But: B-L is broken to generate neutrino mass. Is this enough??? In colliders:

HNL oscillations in detector can destroy coherence and make LNV observable!

Quasi-degenerate HNLs kinmeatically indistinguishable, behave like one particle with non-integer R11!

e.g. Anamiati et al 1607.05641

$$\mathcal{R}_{\ell\ell} = \frac{\Delta M_{\rm phys}^2}{2\Gamma_N^2 + \Delta M_{\rm phys}^2}$$

Cases $R_{ll} = 0$ and $R_{ll} = 1$ nevertheless represent useful benchmarks

MaD et al 2207.02742

Majorana nature of HNLs: Can LNV decay be observed?

- **B-L symmetry: destructive interference amongst different HNL flavours**
- But: B-L is broken to generate neutrino mass. Is this enough??? In colliders:

HNL oscillations in detector can destroy coherence and make LNV observable!

• Quasi-degenerate HNLs kinmeatically indistinguishable, behave like one particle with non-integer *R*11!

e.g. Anamiati et al 1607.05641

$$\mathcal{R}_{\ell\ell} = \frac{\Delta M_{\rm phys}^2}{2\Gamma_N^2 + \Delta M_{\rm phys}^2}$$

 Does neutrino osc. data allow for this without fine tuning? It depends MaD/Klaric/Klose <u>1907.13034</u>

cf also 1409.4265, 1505.04749, 1605.01123, 1709.06553, 1703.01934, 1709.03797, 1805.00070, 1810.07210, 1905.03097, 1904.05367, 2012.05763

How to measure ΔM ?

ratio of LNV to LNC decays is sensitive to ΔM

$$\mathcal{R}_{\ell\ell} = \frac{\Delta M_{\rm phys}^2}{2\Gamma_N^2 + \Delta M_{\rm phys}^2}$$

spatially resolving this ratio gives more information!

Antusch et al <u>1709.03797</u>

MaD/Klaric/Klose 1907.13034

Testing Leptogenesis

Conclusions

- HNLs appear in many a well-motivated extensions of the SM, can be a portal to a "hidden sector", ...
- HNLs can explain neutrino masses and cosmological problems (leptogenesis, DM,...)
- HNLs in realistic neutrino mass model can phenomenologically behave like Dirac-particles, Majorana-particles, or something in between... ("pseudo Dirac", "inverse seesaw", "symmetry protected seesaw" ...)
- Spectrum of possibilities can practically be modelled with continuous parameter $0 \le Ru \le 1$
- Cases $R_{ll} = 0$ and $R_{ll} = 1$ represent useful benchmarks
- *R*^{*u*} can be constrained in different ways at FCC-ee:
 - Forward-backward asymmetry in charged leptons from HNL decay
 - Spectrum of charged leptons

≤ ≤

- Comparing HNL lifetime to production cross sections
- Requires good measurement of M and the individual *Ua*²

Backup Slides

PBC Benchmark Recommendations

Benchmarks for LNV decay ratio:

- Ru = 0 [one Dirac HNL]
- *Rll* = 1 [one Majorana HNL]

Benchmarks for flavor mixing pattern:

MaD/Klaric/Lopez-Pavon 2207.02742

Leptogenesis

Heavy Neutrino Mass Scale

Z-bosons are polarised due to P-violation of weak interaction: $g_R = 2\sin^2\theta_W$ $g_L = (1 - 2\sin^2\theta_W)$ $P_Z = \frac{(g_R^2 - g_L^2)}{(g_L^2 + g_R^2)} \simeq -0.15.$

Dirac *N* particles and antiparticles have different angular distributions:

$$\begin{aligned} \frac{1}{\sigma_D(\nu_4)} \frac{\mathrm{d}\sigma_D(\nu_4)}{\mathrm{d}\cos\theta} &= \frac{3}{4(g_R^2 + g_L^2)} \frac{M_Z^2}{(2M_Z^2 + m_4^2)} \left(g_R^2 (1 - \cos\theta)^2 + g_L^2 (1 + \cos\theta)^2 + \frac{m_4^2}{M_Z^2} (g_R^2 + g_L^2) \sin^2\theta \right) \\ \frac{1}{\sigma_D(\bar{\nu}_4)} \frac{\mathrm{d}\sigma_D(\bar{\nu}_4)}{\mathrm{d}\cos\theta} &= \frac{3}{4(g_R^2 + g_L^2)} \frac{M_Z^2}{(2M_Z^2 + m_4^2)} \left(g_R^2 (1 + \cos\theta)^2 + g_L^2 (1 - \cos\theta)^2 + \frac{m_4^2}{M_Z^2} (g_R^2 + g_L^2) \sin^2\theta \right) \end{aligned}$$

For Majorana *N* there is only one distribution:

$$\frac{1}{\sigma_M(\nu_4)} \frac{\mathrm{d}\sigma_M(\nu_4)}{\mathrm{d}\cos\theta} = \frac{3}{4} \frac{M_Z^2}{(2M_Z^2 + m_4^2)} \left(1 + \cos^2\theta + \frac{m_4^2}{M_Z^2}\sin^2\theta\right)$$

Blondel et al <u>2105.06576</u>

Blondel et al <u>2105.06576</u>

Blondel et al 2105.06576

Backgrounds

Table 2: The expected number of events at an integrated luminosity of 150 ab^{-1} is shown for the background processes, for each selection criterion. The cumulative number of events is shown. Only statistical uncertainty is taken into account.

	Before selection	Exactly 2 reco e	Vetoes	p > 10 GeV	$ d_0 >0.5~{ m mm}$
$Z \rightarrow ee$	$2.19 \times 10^{11} \pm 6.94 \times 10^{7}$	$1.75 \times 10^{11} \pm 6.19 \times 10^{7}$	$1.53 \times 10^{11} \pm 5.80 \times 10^{7}$	$7.07 imes 10^8 \pm 3.94 imes 10^6$	$\leq 3.94 imes 10^6$
$\mathrm{Z} \rightarrow \mathrm{bb}$	$9.97 \times 10^{11} \pm 4.14 \times 10^{7}$	$5.64 \times 10^8 \pm 9.85 \times 10^5$	$3.25 \times 10^5 \pm 2.36 \times 10^4$	$1.22 \times 10^5 \pm 1.45 \times 10^4$	$1.72 \times 10^3 \pm 1.72 \times 10^3$
$Z \rightarrow \tau \tau$	$2.21 \times 10^{11} \pm 7.00 \times 10^{7}$	$5.49 \times 10^9 \pm 1.10 \times 10^7$	$5.10 \times 10^9 \pm 1.06 \times 10^7$	$2.52 \times 10^{9} \pm 7.47 \times 10^{6}$	$6.64 imes 10^4 \pm 3.84 imes 10^4$
$Z \rightarrow cc$	$7.82 \times 10^{11} \pm 2.61 \times 10^{7}$	$1.69 \times 10^7 \pm 1.21 \times 10^5$	$5.22 \times 10^3 \pm 2.13 \times 10^3$	$1.74 \times 10^3 \pm 1.23 \times 10^3$	$\leq 1.23 \times 10^3$
$\mathbf{Z} \to \mathbf{uds}$	$2.79 \times 10^{12} \pm 8.83 \times 10^{7}$	$2.30 imes 10^7 \pm 2.54 imes 10^5$	$2.79 \times 10^{3} \pm 2.79 \times 10^{3}$	$\leq 2.79 imes 10^3$	$\leq 2.79 imes 10^3$

Table 3: The expected number of events at an integrated luminosity of 150 ab^{-1} is shown for representative HNL signal benchmark masses and $|V_{eN}|$ choices, for each selection criterion. The cumulative number of events is shown. Only statistical uncertainty is taken into account.

	Before selection	Exactly 2 reco e	Vetoes	p > 10 GeV	$ d_0 > 0.5 \text{ mm}$
$m_N = 10 \text{ GeV}, V_{eN} = 2 \times 10^{-4}$	2534 ± 11	1006 ± 7	996 ± 7	951 ± 7	907 ± 7
$m_N = 20 \text{ GeV}, V_{eN} = 9 \times 10^{-5}$	458 ± 2	313 ± 2	308 ± 2	293 ± 2	230 ± 1
$m_N = 20 \text{ GeV}, V_{eN} = 3 \times 10^{-5}$	51.0 ± 0.2	34.7 ± 0.2	34.2 ± 0.2	32.6 ± 0.2	31.2 ± 0.2
$m_N = 30 \text{ GeV}, V_{eN} = 1 \times 10^{-5}$	5.01 ± 0.02	3.85 ± 0.02	3.76 ± 0.02	3.54 ± 0.02	3.39 ± 0.02
$m_N = 50 \text{ GeV}, V_{eN} = 6 \times 10^{-6}$	1.23 ± 0.01	0.99 ± 0.01	0.96 ± 0.01	0.92 ± 0.01	0.729 ± 0.004

B-L Charge Assignment

 $-\mu \bar{M} \frac{1}{2} \left(\overline{\psi_N^c} \psi_N + \overline{\psi_N} \psi_N^c \right) - \mu' \bar{M} \overline{\nu_{R3}^c} \nu_{R3} , \qquad \qquad \text{Shaposhnikov 06} \\ \text{Kersten/Smirnov 07} \end{cases}$

LNV at the LHC

- At the LHC there exist fully reconstructable final states
- Direct observation of LNV (e.g. same sign dilepton) is possible
- Other methods are complementary

How to practically distinguish Dirac from Majorana N?

- 1) Direct observation of LNV in fully reconstructed final state
- 2) Angular distribution of final state particles
- 3) Polarisation of final state particles
- 4) Lifetime of N