

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 681647).

ENUBET: the first monitored neutrino beam

A. Branca* - University of Milano-Bicocca & INFN Sezione di Milano-Bicocca

*on behalf of the ENUBET Collaboration

ICHEP 2022 - XLI International Conference on High Energy Physics July 6-13, 2022 – Bologna, Italy

A. Branca

<u>Outline</u>

- ENUBET is the project for the realization of the first monitored neutrino beam. In the next slides:
 - > Beamline final design and parameters fine tunning;
 - Chosen decay tunnel instrumentation;
 - Lepton reconstruction PID performance;
 - Hadroproduction systematics assessment;
 - Demonstrator status;
- ENUBET: ERC Consolidator Grant, June 2016 May 2021 (COVID: extended to end 2022). PI: A. Longhin;
 - Since April 2019: CERN Neutrino Platform Experiment NP06/ENUBET and part of Physics Beyond Colliders (PBS);
 - Collaboration: 60 physicists & 13 institutions; Spokespersons: A. Longhin, F. Terranova; Technical Coordinator: V. Mascagna;

ICHEP2022 - 07/07/2022

Systematics matter!

Next generation long-baseline experiments (DUNE & HyperK) conceived for precision v-oscillation measurements:

- test the 3-neutrino paradigm;
- determine the mass hierarchy;
- test CP asymmetry in the lepton sector;

$$N_{\nu_e}^{FAR} = P_{\nu_{\mu} \to \nu_e} \cdot \sigma_{\nu_e} \cdot \Phi_{\nu_{\mu}}^{FAR}$$

$$Very \text{ good knowledge needed}$$

Moreover ν -interaction models would benefit from improved precision on cross-sections measurements

The purpose of ENUBET: design a narrow-band neutrino beam to measure

- neutrino cross-section and flavor composition at 1% precision level;
- neutrino energy at 10% precision level;

From the European Strategy for Particle Physics Deliberation document:

To extract the most physics fromDUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied.

ENUBET: the first monitored neutrino beams

ERC project focused on:

measure positrons (instrumented decay tunnel) from $K_{e3} \Rightarrow$ determination of v_e flux;

✤ As CERN NP06 project:

extend measure to muons (instrumented decay tunnel) from $K_{\mu\nu}$ and (replacing hadron dump with range meter) $\pi_{\mu\nu} \Rightarrow$ determination of ν_{μ} flux;

Main systematics contributions are bypassed: hadron production, beamline geometry & focusing, POT;

<u>The ENUBET beamline</u>: the final design

Transfer Line:

- optics optimization w/ TRANSPORT (5% momentum bite centered @ 8.5 GeV) G4Beamline for particle transport and interactions;
- FLUKA for irradiation studies, absorbers and rock volumes included in simulation (not shown above);
- optimized graphite target 70 cm long & 3 cm radius (dedicated studies, scan geometry and different materials);
- tungsten foil downstream target to suppress positron background;
- tungsten alloy absorber @ tagger entrance to suppress backgrounds;

Dumps:

- **Proton dump**: three cylindrical layers (graphite core -> aluminum layer -> iron layer);
- Hadron dump: same structure of the proton dump -> allows to reduce backscattering flux in tunnel;

A. Branca

ICHEP2022 - 07/07/2022

Full facility implemented in GEANT4:

 \sim 1.5X w.r.t. previous results

K⁺ XY at Tunnel Entrance

- Controll over all paramaters;
- Access to the paricles histories;

assessment of the nu flux systematics

5

v_e^{CC} energy distribution @ detector

A total ν_e^{CC} statistics of 10^4 events in ~3 years

- @ SPS with $4.5 \cdot 10^{19}$ POT/year;
- 500 tonne detector @ 50 m from tunnel end;

Taggable component

About 80% of total v_e flux is produced by decays in the tunnel (above 1 GeV)

Non taggable components:

- Below 1 GeV: main component produced in p-dump
 - clear separation from taggable ones (energy cut);
 - further improvements in separation optimizing p-dump position;
- Above 1 GeV: contributions from straight section before tagger and hadron-dump;
 - rely on simulation for this component;

v_{μ}^{CC} energy distribution @ detector

from beam axis;

Precise determination of E_{ν} : no need to rely on final state particles from ν_{μ}^{CC} interaction

- 8-25% E_{ν} resolution from π in DUNE energy range;
- 30% E_{ν} resolution from π in HyperK energy range (DUNE optimized TL w/ 8.5 GeV beam):
 - ongoing R&D: Multi-Momentum Beamline (4.5, 6 and 8.5 GeV)
 => HyperK & DUNE optimized;

ICHEP2022 - 07/07/2022

ENUBET @ SPS, 400 GeV, 4.5e19 pot, 500 ton detector

The ENUBET beamline:optimization studies

An optimization campain is ongoing:

- Goal: further improvement of the π/K flux at tunnel entrance while keeping background level low;
- **Strategy**: scan parameters space of beamline to maximize FOM;
- Tools: full facility implemented in Geant4 -> controll with external cards all parameters -> systematic optimization with developed framework based on genetic algorithm;

	Design	4.13	0.34		
	Optimized	5.27	0.44		
	Background hitting tunnel walls	$e^{+}[10^{-3}]/K^{+}$	$\pi^+[10^{-3}]/K^+$	ninany	
	Design	7	59		
	Optimized	2	35		

- About 28% gain in flux -> 2.4 years to collect $10^4 v_e^{CC}$;
- Reduced backgrounds, but similar to signal shapes -> next step: improve FOM definition (include sgn/bkg distributions);

Decay tunnel instrumentation prototype & tests

Prototype of sampling calorimeter built out of LCM with lateral WLS-fibers for light collection

Tested during 2018 test-beams runs @ CERN TS-P9

Large SiPM area (4x4 mm²) for 10 WLS readout (1 LCM)

SiPMs installed outside of calorimeter, above shielding: avoid hadronic shower and reduce (factor 18) aging

Status of calorimeter:

- Iongitudinally segmented calorimeter prototype successfully tested;
- photon veto successfully tested;
- custom digitizers: in progress;

Choise of technology: finalized and cost-effective!

F. Acerbi et al, JINST (2020), 15(8), P08001

Lepton reconstruction and identification performance

- Full GEANT4 simulation of the detector: validated by prototype tests at CERN in 2016-2018; hit-level detector response; pile-up effects included (waveform treatment in progress); event building and PID algorithms (2016-2020);
- Large angle positrons and muons from kaon decays reconstructed searching for patterns in energy depositions in tagger;
- Signal identification done using a Neural Network trained on a set of discriminating variables;

<u>v-Flux: assessment of systematics</u>

Monitored ν flux from narrow-band beam: measure rate of leptons \Leftrightarrow monitor ν flux

- build a Signal + Background model to fit lepton observables;
- include hadro-production (HP) & transfer line (TL) systematics as nuisances;

Used hadro-production data from NA56/SPY experiment to:

- Reweight MC lepton templates and get their nominal distribution;
- Compute lepton templates variations using multi-universe method;

v-Flux: impact of hadro-production systematics

The demonstrator

Detector prototype under construction, to demonstrate:

• Performance / scalability / cost-effectiveness;

Test-beam @ CERN in October 2022

- > 1.65 m longitudinal & 90° in azimuth;
- > 75 layers of: iron (1.5 mm thick) + shintillator (7 mm thick) => 12X3 LCMs;
- central 45° part instrumented: rest is kept for mechanical considerations;
- * modular design: can be extended to a full 2π object by joining 4 similar detectors (minimal dead regions);
- new light readout scheme with frontal grooves instead of lateral grooves:
 - driven by large scale scintillator manufacturing: safer production and more uniform light collection;
 - performed GEANT4 optical simulation validation;
- scintillators: produced by SCONIX and milled by local company;
- ENUBINO: pre-demonstrator w/ 3 LCM tested @ CERN in November 2021 to study uniformity and efficiency;

The demonstrator

Construction @ LNL-INFN Labs

• 15 mins lift test with additional 2 tonnes (total 5.2 tonnes)

Construction @ LNL-INFN Labs

• The scintillator tiles

Conclusions and next steps

> ENUBET goal: first monitored neutrino beam for neutrino cross-section measurements @ O(1%):

- ERC project started in 2016;
- CERN experiment (NP06) within Neutrino-Platform in 2019;
- part of Physics Beyond Collider framework;

> Final design of beam transfer line in place, fine-tunning parameters:

- static transfer line: $10^4 v_e^{CC}$ events in ~3 years (@ SPS);
- ongoing optimization of transfer line parameters w/ dedicated framework;
- multi-momentum beamline ongoing R&D: DUNE & HyperK optimized;

> Design of decay tunnel instrumentation finalized:

- prototypes test-beams @ CERN: technology validation;
- building final demonstrator to be tested @ PS East Hall in 2022;

Detector simulation and PID studies done:

- developed full GEANT4 simulation of calorimeter;
- finalizing waveform to fully assess the pile-up effects;
- very good PID performance achieved on both positron and muon reconstruction;

> Systematics: hadroproduction and next steps:

- achieved 1% systematic goal due to hadroproduction with lepton monitoring;
- assess systematics due to detector effects and beamline parameters;

ERC project is on schedule and in the last stage

CERN site-dependent implementation within NP06/ENUBET in PBS framework

2023-2024 delivery of Conceptual Design Report with physics and costs definition

Experimental proposal expected in 2024

Thank you for your attention!

Additional Material

Lepton reconstruction and identification:

$\pi_{\mu 2}$ muon reconstruction to constrain low-energy ν_{μ}

Low angle muons: out of tagger acceptance, need muon stations after hadron dump

Possible candidates: fast Micromega detectors with Cherenkov radiators (PIMENT project)

Exploit differences in distributions to disentangle components

Hottest detector (upstream station): cope with ~2 MHz/cm² muon rate and ~10¹² 1 MeV- n_{eq} /cm²

Exploit:

- correlation between number of traversed stations (muon energy from range-out) and neutrino energy;
- difference in distribution to disentangle signal from halo-muons;

Detector technology: constrained by muon and neutron rates;

Systematics: punch through, non uniformity, efficiency, halo- μ ;

Waveform simulation & pile-up

Implementation of waveform generation in the full simulation: as in real data (digitally sampled signals @ 500 MS/s) -> real pile-up treatment

- GEANT4 hit-level energy deposits are converted into photons hitting SiPMs (~15 phe/MeV, from test-beams & cosmic rays measurements);
- SiPM response simulated using GoSiP software: fine control on all sensor parameters;
- waveforms are processed with a pulse-detection algorithm: time and energy information are evaluated;
- results is used as input for event building;

pulse-detection algorithm optimized for faithful energy evaluation, high efficiency, and accurate time resolution

Transfer line and extrac-	Hit rate per	detection effi-
tion scheme	LCM	ciency
TLR5 slow	1.1 MHz	97.4%
TLR5 fast	10.4 MHz	89.7%
TLR6 slow	2.2 MHz	95.3%

Slow extraction = 4.5×10^{13} POT in 2 s; Fast extraction (horn) = $10 \times$ slow extraction;

Time residuals laver 3

2 95e+04 + 9 45e+(

-0.0115 ± 0.000

*FOM = # of K⁺ within momentum bite focused at first quadrupole after the horn => beamline independent

FLUKA irradiation studies

A detailed FLUKA simulation of the setup has been implemented (includes proper shielding around the magnetic elements)

Neutron fluence provided by FLUKA guided the design of the detector tecnology for tagger:

-> SiPMs outside of the calorimeter

FLUKA irradiation studies

Demonstrator

Weight ~7 t

5% Borated Polyethylen arcs

Machined iron for calorimeter absorber layers A. Branca

Demonstrator

- ~1800 channels;
- SiPM Hamamatsu;
- Hybrid readout (custom+commerc ial digitizers)

- 6375 scintillator tiles in different shapes;

- 3D printed fiber routers;

ENUBINO @ CERN-PS test-beam in Nov.2021

ENUBET within Physics Beyond Collider framework

Accelerator and engeneering detailed studies, assessment of the facility costs, investigate posssibility to exploit ENUBET for cross section experiments at CERN North Area

Assess synergy with nuSTORM. Common points: proton extraction line, target station, first stage of meson focusing, proton dump, neutrino detector

Multi-momentum beamline studies to span HyperK and DUNE region of interests