Search for Neutrinoless Double-Beta Decay with LEGEND-1000

Dr. Michael Willers

Technical University of Munich

09.07.2022

ICHEP 2022 - Bologna

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Technische Universität München

sität en

The Large Enriched Germanium Experiment for Neutrinoless ßß Decay

 LEGEND mission: "The collaboration aims to develop a phased, ⁷⁶Ge based doublebeta decay experimental program with **discovery potential** at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

(Neutrinoless) Double-Beta (ββ) Decay

In several isotopes (e.g. ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe) β decay is forbidden $\rightarrow \beta\beta$ decay becomes observable $\rightarrow 2\nu\beta\beta$ predicted by the Standard Model & measured experimentally \rightarrow Half-lifes \mathcal{O} (10¹⁸ - 10²¹ years)

Neutrinoless $\beta\beta$ decay:

→ violates Lepton Number conservation by 2 units → new physics!

 \rightarrow determines nature of the neutrino \rightarrow Majorana particle

 \rightarrow provides information on v mass via m_{BB} (light neutrino exchange scenario)

 \rightarrow current best limits: T_{1/2} > \mathcal{O} 10²⁵ - 10²⁶ yr

Designing for an unambiguous discovery

What is required for a discovery of $0\nu\beta\beta$?

Long half-lives require large exposure!

For 3 - 4 counts of $0\nu\beta\beta$ we need:

- 100 kg-years @ 10²⁶ years
- 1 ton-year @ 1027 years
- 10 ton-years @ 10²⁸ years

Achieving statistical significance requires a good signal-to-background ratio

- Very low background event rate
- The best possible energy resolution

Simulated LEGEND-1000 example spectrum for $T_{1/2} = 10^{28}$ yrs BI < 10⁻⁵ cts/keV kg yr, after cuts, 10 years of data

Even a signal at the bottom of the inverted ordering will be visible to the eye!

Designing for an unambiguous discovery

→ Goal: "quasi-background free"* operation

*"guasi-background free": Less than one background count in the signal ROI with the full exposure 5

HPGe Detectors for 0vββ

Experimental signature:

- \rightarrow Detector = $\beta\beta$ source
- ββ decay very localised interaction
- \rightarrow peak at the ⁷⁶Ge Q-value (Q_{BB} = 2039 keV) above 2vββ continuum

Advantages of HPGe detectors:

- **Isotope enrichment** from 7.7% to ~ 92 % & commercial detector production
- **Highly efficient:** > 90 % ⁷⁶Ge use & ~70 % signal efficiency after all cuts

(3-5 kV)

- **Easy operation:** low operating voltage (< 5 kV) & moderate cryogenic requirements (77-90 K)
- Superb energy resolution @ $Q_{\beta\beta}$ (~ 0.1 % FWHM)
- Lowest background per FWHM energy resolution in the field [Science 365 (2019) 1445] [PRL 125 (2020) 252502]
- Many tools for background reduction
 - Multiplicity, timing, active veto shielding
 - Pulse-shape used for event topology discrimination

70.002022 **H**O Dr. Michael Willers

LEGEND-1000: Concept & Design

Background index at $Q_{\beta\beta}$ after cuts

Projected background index after all cuts: $9.4^{+4.9}_{-6.3} \times 10^{-6} \frac{\text{counts}}{\text{keV kg yr}}$

Quasi-background free operation up to 10 ton-years of exposure, for unambiguous discovery beyond 10²⁸ years

LEGEND-1000: Background Model

Background rejection in point contact HPGe detectors

LEGENI

0vββ signal candidate (single-site)

Surface- β -background ⁴²K (⁴²Ar) on n+ contact

γ-background (multi-site)

a-background on p+ contact

Innovations toward LEGEND-1000

ASIC-based HPGe readout electronics

- Low-mass, low-noise charge sensitive amplifier ASIC operated close to detector
- Multiple implementations: LBNL (baseline) & TUM / Milano (alternative)
- Lower electronic noise, higher bandwidth & faster signals
- Rich international characterisation & integration efforts in Europe & US

enrGe detectors

- p-type detectors
 - \rightarrow large n⁺ surface insensitive to α backgrounds
- Small p⁺ signal contact
 → field geometry allows to reconstruct event topology
- Larger mass of ICPC benefits background reduction
 → near backgrounds scale with # of detectors
 (electronics, cables, detector supports)
- Proven long-term stable operation in liquid argon

Signal transients from baseline ASIC implementation

Innovations toward LEGEND-1000

LAr instrumentation

- Detection of liquid argon scintillation light with lowbackground wavelength-shifting fibers and SiPM arrays
- Powerful background suppression tool!

Clean Materials

- Minimize materials close to Ge detectors and use of highest purities:
 - Underground electroformed copper (EFCu) reduces U, Th, and cosmogenic activation

< 0.017 ± 0.03 pg/g ²³⁸U < 0.011 ± 0.05 pg/g ²³²Th

- Copper-Kapton laminated cables
- Optically active structural materials:
 - Polyethylene naphthalate (PEN) shifts
 128 nm LAr scintillation light to ~440
 nm and scintillates
 - Yield strength higher than copper at cryogenic temperatures

EFCu for holders and reentrant tube

PEN: scintillating (self-vetoing) high-purity detector support

Machining

Cleaning

PEN plate

LEGEND-1000: Underground Sites

SNOLAB: cryopit is committed for ton-scale 0vββ experiment

LNGS: Re-purpose BOREXINO tank and infrastructures

SNOLAB is deeper than LNGS
LNGS depth is sufficient with tagging in-situ produced cosmogenic isotopes

- LEGEND-1000 is a ton-scale $0\nu\beta\beta$ experiment designed for unambiguous discovery of $0\nu\beta\beta$ decay at half-lives > 10^{28} years
 - Optimised for a quasi-background-free 0vββ search at 10 ton-years of exposure
 - Builds on breakthrough developments by GERDA, MAJORANA, and LEGEND-200 and novel developments & innovations
- LEGEND-1000 emerged successful from the DOE portfolio review in 2021
 - currently preparing for CD-1
 - conceptual design report is in preparation
 - construction is expected to start ~ 2025

LEGEND

- We appreciate the support of our sponsors:
 - German Federal Ministry for Education and Research (BMBF)
 - German Research Foundation (DFG), Excellence Cluster ORIGINS
 - German Max Planck Society (MPG)
 - South Dakota Board of Regents
 - U.S. National Science Foundation, Nuclear Physics (NSF)
 - U.S. Department of Energy, Office of Nuclear Physics (DOE-NP)
 - U.S. Department of Energy, Through the PNNL, LANL, ORNL & LBNL LDRD programs
 - Italian Instituto Nazionale di Fisica Nucleare (INFN)
 - Swiss National Science Foundation (SNF)
 - Polish National Science Centre (NCN)
 - Foundation for Polish Science
 - Russian Foundation for Basic Research (RFBR)
 - Research Council of Canada, Natural Sciences and Engineering
 - Canada Foundation for Innovation, John R. Evans Leaders Fund
 - European Research Council
 - Science and Technology Facilities Council, part of UK Research and Innovation
- We thank our hosts and colleagues at LNGS and SURF
- We thank SNOLAB for their engineering support in LEGEND-1000 planning
- We thank the ORNL Leadership Computing Facility and the LBNL NERSC Center