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EFTs for low energy observables
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EFTs for low energy observables

We can use low energy precision measurement for NP searches:

Data and SM » (Correlated bounds) of Wilson
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We can use low energy precision measurement for NP searches:
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Can we use this
approach for
neutrino oscillation
observables?
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-How can we properly introduce NP effects into these settings?
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- CC x NC: This talk



Neutrino oscillation observables in QFT

-How can we properly introduce NP effects into these settings?

- CC x CC:
. CC X NC: This talk

Caveats:
-NP effects present both on production and detection
-No matter effects in neutrino propagation
-Ability to incorporate NP “polluting” SM inputs
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Neutrino oscillation observables in QFT
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Neutrino oscillation observables in QFT
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Differences with the “factorized” approach when:
-NP effects present both on production and detection
-Flavor-violating couplings




Neutrino oscillation observables in QFT

Differences with the “factorized” approach when:
-NP effects present both on production and detection
-Flavor-violating couplings

Extensible to include RH neutrinos, Majorana neutrinos
and neutrino magnetic moments!!



COHERENT experiment

-The experiment consists of a set of detectors built
around nuclear targets (Csl, Ar) exposed to neutrinos
generated by the Spallation Neutrino Source (SNS)
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-Built to observe coherent elastic neutrino scattering off
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-Neutrinos are produced from pion decays (v,) and the
subsequent muon decays (v, ve)
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-First experiment to measure CEvNS and to describe its
energy and time distributions
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-The experiment consists of a set of detectors built
around nuclear targets (Csl, Ar) exposed to neutrinos
generated by the Spallation Neutrino Source (SNS)

-Built to observe coherent elastic neutrino scattering off
nuclei (CEVNS)

-Neutrinos are produced from pion decays (v,) and the
subsequent muon decays (v, ve)

-First experiment to measure CEvNS and to describe its
energy and time distributions

-Production involves a charged current interaction and
detection involves a neutral current interaction
— perfect scenario for our formalism!!



NP at the COHERENT experiment

What NP effects enter the COHERENT observables?

-Pion decay production piece:
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-Muon decay production piece:
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NP at the COHERENT experiment

What NP effects enter the COHERENT observables?

-Pion decay production piece:
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-Muon decay production piece:
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-Detection piece:
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PROBLEM:
Production

NP at the COHERENT eXperiment contributions are

suppressed by the
What NP effects enter the COHERENT observables? decay inputs

-Pion decay production piece:
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-Muon decay production piece:
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-Detection piece:
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Preliminary results

-Impact from our formalism:
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Preliminary results

-Limits on detection WC: We recover the limits obtained in the literature
— complete results coming soon
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Conclusions

~ We have developed an EFT based formalism for the description of NP affecting
neutrino oscillation observables. This setup allows us to:
- understand the UV meaning and limitations of the production/detection NSIs
- take into account NP in production & detection
- take into account NP affecting SM input
- connect with specific NP models or interactions (e.g. leptoquarks)”

~We have succesfully applied this framework for the description of BSM physics at the
COHERENT experiment, recovering previous results (full results coming soon!!)

~We have gquantitatively determined the small impact of NP coming from production

> Qutlook: Link the limits obtained within LEFT to bounds in the SMEFT



