

A New Results of AMoRE-I Experiment

KIM Hanbeom,

On Behalf of the AMoRE Collaboration

ICHEP 2022, Bologna, Italy

Jul. 6th-13th, 2022

$0\nu\beta\beta$ search using ^{100}Mo

AMoRE:

A search for neutrinoless double beta $(0\nu\beta\beta)$ decay of ¹⁰⁰Mo using Mobased scintillating crystals and low-temperature sensors.

¹⁰⁰Mo:

- High $Q_{\beta\beta} = 3034 \text{ keV}$
- High natural abundance: 9.7 %
- Scintillation crystals with 100 Mo enrichment > 95% —XMo_aO_b (XMO):
 - X=Ca, Li₂, Na₂, Zn, Sr, Pb, ...
 - Detection of light/heat signal \rightarrow rejection of surface- α background.
- Relatively short half life $(0\nu\beta\beta)$ in theoretical expectation

Abund.

(%)

0.187

7.8

9.2

2.8

9.7

11.8

7.5

5.8

34.2

8.9

5.6

Q

(MeV)

4.271

2.040

2.995

3.350

3.034

2.013

2.802

2.228

2.528

2.479

3.367

 $\beta\beta$ -decay nuclei

with Q > 2 MeV

 $^{48}Ca \rightarrow ^{48}Ti$

 $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$

 $^{82}Se \rightarrow ^{82}Kr$

 $^{96}Zr \rightarrow ^{96}Ru$

Detector Module

- Cylindrical CMO and LMO crystals, sizes vary $\Phi \ge 4$ cm / H $\lesssim 5$ cm.
 - CMO: ⁴⁸Ca depleted, $Q_{\beta\beta}$ (⁴⁸Ca) = 4271 keV.
- Metallic magnetic calorimeter (MMC) + SQUID:
 - Fast signal timing: a few millisecond rise-time for phonon signals at mK.
 - Low random coincidence background.
 - Energy resolution $\sim 10~keV$ FWHM at 2.6 MeV.

Wide dynamic range

High linearity

•

٠

Cryostat & Shielding

- Cryogen-free dilution refrigerator.
- For AMoRE-pilot and AMoRE-I.
- Now operating at 12 mK with $\sim 1 \,\mu W$ cooling power.
- Pb (γ), boron, and polyethylene (n).
- Plastic scintillator muon counter.
- Yangyang Underground Laboratory (Y2L) at 700 m depth.

Signal Processing & Analysis

- Reconstruction for improving energy resolution and β/α discrimination power (DP):
 - Butterworth bandpass filter— mainly for noise suppression:
 - pulse amplitude: pulse height or a least square fit to the template signal.
 - Stabilization heater signal every 10 seconds to gain drift corrections.

AMoRE-pilot final result

- Experiment between 2016-2018
- Understanding of the background components and reduction of them.
- Background level of ~0.5 counts/keV/kg/yr at 2.8-3.2 MeV.
- neutron-induced γ , crystals' internal contamination, rock/air-radon γ .
- Internal background—arXiv:2107.07704
- $T_{1/2}^{0\nu} > 3.2 \times 10^{23}$ years at 90% CL.

AMoRE-pilot \rightarrow AMoRE-I

- 6 CMO (1.89 kg) → 13 CMO (4.58 kg) + 5 LMO (1.61 kg)
 - Total crystal mass = 6.19 kg, ¹⁰⁰Mo mass = 3.0 kg
- Stabilization heater for all crystals.
- MMC sensor: Au:Er → Ag:Er.
- Using same cryostat + two stage temperature control: $\langle \Delta T \rangle < 1 \ \mu K$.
- Shielding enhancements:
 - Outer Pb: 15 \rightarrow 20 cm; neutron shields: boric acid silicon + more PE / B-PE.
 - More muon counter coverage.
 - More supply of Rn-free air.

AMoRE-I data taking

- Data taking until the end of 2022 (at least)
- $4.68 \text{ kg} \cdot \text{year crystal} (2.24 \text{ kg} \cdot \text{year}^{100}\text{Mo})$ exposure is presented here (selected data in blue dotted boxes).

Energy Calibration

Particle Identifications, CMO and LMO

- CMO shows better discrimination power light yield: CMO > LMO.
- LMO has much less α contamination.

Background Spectrum

- All crystal excluding 1 LMO for very poor β/α discrimination power:
 - 13 CMO + 4 LMO: exposure = $4.68 \text{ kg}_{\text{XMO}}$ yr = $2.24 \text{ kg}_{\text{ISO}}$ yr.
- Anti-coincidence cuts reject events:
 - coincident at multiple crystals within 2 ms ($\varepsilon \sim 99\%$),
 - within 10 ms after a muon counter event ($\varepsilon \sim 99.7\%$),
 - within 20 minutes after a ²¹²Bi α -decay event candidate ($\varepsilon \sim 98\%$).

Preliminary $0\nu\beta\beta$ limit from AMoRE-I

- Key parameters for the experimental sensitivity:
 - Signal ~ efficiency × [isotope mass × time] exposure.
 - Background ~ radioactivity level at around $Q_{\beta\beta}$ and energy resolution.

Preliminary $0\nu\beta\beta$ limit from AMoRE-I

- ROI to contain most (>99%) of the $0\nu\beta\beta$ signal peak, $\varepsilon_{\text{containment}} \sim 81\%$.
- Background = 0.034 ± 0.005 counts/keV/kg/year, from ROI side-band.
- Combining the result of counting analysis at ROI, with a flat background constraint from the sideband events for each crystal.
- $T_{1/2}^{0\nu} > 1.05 \times 10^{24}$ years at 90% C.L.

AMoRE-II in preparation

AMoRE-II Detector module

90 modules (~27 kg LMO) for the first stage

2022-07-07

AMoRE-II in YemiLab

Limits & Sensitivities

- Final results of AMoRE-I with doubled data and further improved analysis.
- AMoRE-II for $T_{1/2}^{0\nu} > 5 \times 10^{26}$ years by 100 kg of ¹⁰⁰Mo × 5 years running.
- Reduction of background level down below 10⁻⁴ ckky.

- AMoRE searches for $0\nu\beta\beta$ using ¹⁰⁰Mo based scintillation crystals at the low temperature detector system.
- Preliminary result of AMoRE-I at its mid-point:
 - Mass×time exposure: 4.68 (2.24) kg yr XMO (¹⁰⁰Mo).
 - Background level ~ 0.03 counts/keV/kg/year at 2860-3200 keV.
 - $T_{1/2}^{0\nu} > 1.05 \times 10^{24}$ years.
 - AMoRE-I data taking will continue at least until end of 2022.
- AMoRE-II starts its data taking soon to head for $T_{1/2}^{0\nu} > 5 \times 10^{26}$ years.

Thank you!

backup

CMO internal background

Background budget for AMoRE-II

Two stage temperature control

