

Measurement of Standard and Nonstandard Oscillations at NOvA

THE UNIVERSITY of MISSISSIPPI

Gavin S. Davies for the NOvA collaboration

Bologna, Italy: July 7th, 2022

The NOvA experiment

NOVA

MN

Start with **world's most powerful neutrino beam**

 NuMI v_µ beam at Fermilab

New MW-capable target and MWcapable horn installed. New **NuMI** power record **893 kW** NuMI Off-axis ν_e Appearance experiment NuMI = Neutrinos at the Main Injector

Far Detector

Near Detector

NOvA addresses many compelling questions surrounding the nature of neutrino mass

- What is the Neutrino Mass Hierarchy?
- Is there CP symmetry violation in neutrinos?
- Is there more to it than 3x3 PMNS?

G. S. Davies | NOvA oscillation results

Fermilab

IL

Candidate Events

2020 Far Detector Spectra

eripheral

Core

2

3

pred.

range

Bayesian Analysis Results

An alternative statistical treatment

Markov Chain MC Bayesian analysis

Conclusions drawn from the data are the same as in previous frequentist analysis

Exclude $\delta_{CP} = \pi/2$ at >3 σ (IO)

Less strong constraint on $\delta_{\rm CP}$ in the NO, but **disfavour** region around $\delta_{\rm CP}$ = $3\pi/2$

Weak preference for NO, Upper octant

Beyond standard oscillations: NSI

Non-standard interactions (NSI): anomalous interactions between neutrinos with matter.

For NSI, add matter potential terms analogous to MSW allowing for flavor-changing and flavor-conserving NSI scattering

- On-diagonal terms, could be interpreted as the NSI *effective mass squared differences:* real-valued
- Off-diagonal terms, could play a role similar to the mixing angles: complex; $\epsilon_{\mu\tau}$, $\epsilon_{e\tau}$, $\epsilon_{e\mu}$
 - may carry CP-violating phases; $\pmb{\delta}_{\mu au}$, $\pmb{\delta}_{ extbf{e} au}$, $\pmb{\delta}_{ extbf{e}\mu}$

NOvA and NSI

 $\varepsilon_{\alpha\beta} = \left| \varepsilon_{\alpha\beta} \right| e^{\imath \delta_{\alpha\beta}}$

NOvA is sensitive to the off-diagonal, flavor-changing NSI parameters (treated as complex)

Full Hamiltonian has many free parameters.

Perform a simultaneous fit to all 6 standard oscillation parameters and 1 NSI along with its associated complex phase: a joint ν_{μ} -disappearance and ν_{e} -appearance fit

 $arepsilon_{\mu au}, arepsilon_{ ext{e} au}$, $arepsilon_{ ext{e} au}$, $arepsilon_{ ext{e} au}$, $arepsilon_{ ext{e} au}$, $arepsilon_{ ext{e} au}$

Take the standard 2020 analysis/dataset/selection/extrapolation and refit in an NSI scenario.

Using reactor-only measurements of θ_{12} , θ_{13} , & Δm^2_{21} to avoid possible NSI contamination

Updated matter density, $\rho,$ uncertainty : NSI strength is related to ρ

NSI Far Detector spectra: $\varepsilon_{e\tau}$

Off-diagonal components lead to a visible change in oscillation Appearance channel is affected by

NSI best-fit comparable to the 2020 standard osc. (3-flavor)

Well within the 3-flavor

Consistent with standard oscillations

NSI Analysis Results: $\varepsilon_{e\tau}$

Upper band arises from a degeneracy for which particular values mimic the std. osc. prediction

In the oscillation probability there are terms proportional to:

 $|\varepsilon_{e\tau}|\cos(\delta_{CP}+\delta_{e\tau})$

When measuring one phase and profiling over unseen phase, smears over entire band.

A cyclic cosine dependence on sum of phases. As $|\varepsilon_{\rm e\tau}|$ increases, becomes dominant term.

If we live in an NSI world, it can dramatically change our standard oscillation interpretation.

In the $\varepsilon_{e_{\tau}}$ channel, NSI presence further reduces interpretation

If we live in an NSI world, it can dramatically change our standard oscillation interpretation.

NSI effect is largest and significant on δ_{CP} . The large mixing angle, θ_{23} , and Δm_{32}^2 are comparatively unaffected.

NOvA is well suited to investigating key questions in Neutrino Physics.

Standard Oscillations:

New Bayesian techniques: consistent with Frequentist analysis; measure θ_{13}

NOvA and T2K have joined forces on a joint fit

- Different baselines and energies provide complementary information
- Results expected this year

Non-standard Oscillations:

- Performed the first simultaneous measurement of δ_{CP} and NSI.
- Consistent with standard oscillations

http://novaexperiment.fnal.gov

https://novaexperiment.fnal.gov/publications/

April 2022

Neutrino 2022 results: DOI:10.5281/zenodo.6683827

Coming up in this session: Deep Learning Event Reconstruction at NOvA [Linda Cremonesi]

Thank you from the

BACKUP

Neutrinos vs. Antineutrinos

The power of two beam modes:

- 1. Inverted ordering gives a **slight suppression** in both
- 2. CP violation causes opposite effects in each ordering
- **3.** Matter effects also produce opposite effects in neutrinos and antineutrinos
- 4. The octant of θ_{23} causes either a **suppression** or **enhancement** i.e. $\theta_{23} < 0.5$ or > 0.5, where 0.5 is maximal mixing

NOvA-only θ_{13} & θ_{23} **Results**

• Here θ_{13} is measured by NOvA:

 $\sin^2(2\theta_{13}) = 0.085^{+0.020}_{-0.016}$

Consistent with reactor experiments

NSI Far Detector spectra: $\varepsilon_{e\mu}$

Fit the four datasets simultaneously Off-diagonal components lead to a visible change in oscillation probability. Appearance channel is affected by $\varepsilon_{e\tau}$, $\varepsilon_{e\mu}$

NSI best-fit comparable to the 2020 3-flavor best fit

 $\Delta\chi^2\approx 0.3$

Well within the 3-flavor 1σ systematic range

Consistent with standard oscillations

THUNIVERSITY MISSISSIPPI

NSI Analysis Results: $\varepsilon_{e\mu}$

Sensitivity to δ_{CP} due to jointly fitting neutrino and anti-neutrino beam data.

All values of CP-violating phases allowed at 90% C.L. for NO Non-zero NSI for $0 \rightarrow \pi \delta_{CP}$ hinting at consistency with IO disfavored by 3-flavor G. S. Davies | NOvA oscillation results

If we live in an NSI world, it can dramatically change our standard oscillation interpretation.

Fractional exclusion of IO for δ_{CP} around $\frac{\pi}{2}$ remains

NSI has a marginal effect on the standard oscillation interpretation of the large mixing angle θ_{23} and Δm_{32}^2

NSI Oscillation Probabilities

 $\mathcal{E}_{\mathrm{e} au}$

 $= 0.25, \delta_{or} = \pi$

6

 $= 0.25, \delta_{e_T} = \pi/2$

 $= 0.25, \delta_{0\pi} = \pi$

 $\epsilon_{e_{\tau}} = 0.25, \, \delta_{e_{\tau}} = 3\pi/2$

6

 $= 0.25, \delta_{e_{\tau}} = \pi/2$

G. S. Davies | NOvA oscillation results

G. S. Davies | NOvA oscillation results

G. S. Davies | NOvA oscillation results

Near Detector Event Display

500

Far Detector Event Display: 550 us

G. S. Davies | NOvA oscillation results

(colors show charge)

Far Detector Event Display: 10 us

G. S. Davies | NOvA oscillation results

(colors show charge)

ND/FD Extrapolation

G. S. Davies | NOvA oscillation results

Event Identification

G. S. Davies | NOvA oscillation results

Event Identification

See Jianming Bian's talk

MISSISSIPP

- Identify flavor with convolutional neural network (CNN) *Aurisano et al.*, <u>JINST 11 (09)</u>, <u>P09001</u>
- Before CNN:
 - Need to be contained
 - ν_{μ} CC needs a well reconstructed muon track
 - First pass of cosmic rejection
- Performance relative to preselection
 - ν_{μ} : ~90% efficient, 99% bkg rejection
 - v_e : ~80% efficient, 80% bkg rejection
- New, faster network trained for 2020 analysis *Psihas et al.*, *Phys. Rev. D 100*, *073005 (2019)*

G. S. Davies | NOvA oscillation results

2020 Far Detector Spectra

Fit the four datasets simultaneously:

Floating over ~50 systematic uncertainties as individual pulls.

We correct significances with Feldman-Cousins unified approach.

Best Fit
$\Delta m_{32}^2 = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2$
$\sin^2\theta_{23} = 0.57^{+0.04}_{-0.03}$

G. S. Davies | NOvA oscillation results

Oscillation Results

Comparison to T2K

Clear tension between NOvA and T2K preferred regions in the Normal Hierarchy/Ordering

• Better agreement in the Inverted Hierarchy/Ordering

A joint fit of the data from the two experiments is needed to properly quantify consistency (in progress)

Asymmetry?

Plotting number of candidates in neutrino vs. antineutrino beam mode, we see **no strong asymmetry** in the appearance rates. Consistent with both slightly negative and slightly positive asymmetries.

Slight preference for NH, Upper Octant

- Exclude IH $\delta = \pi/2$ at > 3σ
- Disfavor NH $\delta = 3\pi/2$ at $\sim 2\sigma$

Open questions

Neutrino mixing very different from quark sector mixing Masses are really small compared to the rest of the Standard Model (SM)

- Do neutrino oscillations violate charge-parity (CP) symmetry?
- Is the mass hierarchy (ordering) "normal" or "inverted"?
- What is the octant of θ_{23} ?

CP Violation Mass Hierarchy θ_{23} Octant

"The existence of non-zero neutrino masses, inferred from neutrino oscillation experiments, is the only labbased evidence of physics beyond the standard model." P.A.N. Machado

Muon Neutrinos at the ND

We use the fit to ND data to constrain the FD prediction. Used to predict both ν_{μ} and ν_{e} spectra at the FD

Large error band shows the effect of flux and cross-section uncertainties in one detector

Electron Neutrinos at the ND

- ND v_e -like sample has no appearance all background
- This sample is used to predict the background at the FD
- Largest background is the irreducible beam v_e/\bar{v}_e

G. S. Davies | NOvA oscillation results

Muon Neutrinos at the FD

G. S. Davies | NOvA oscillation results

Electron Neutrinos at the FD

Two-detector technique

We use ND data to predict the oscillated spectra in the FD

G. S. Davies | NOvA oscillation results

