Measuring Neutrino Beam Flux with NA61/SHINE

D. Zimmerman University of Colorado ICHEP2022 Bologna, Italy 7 July 2022

NA61/SHINE Neutrino Program

- Neutrino beam physics
- NA61/SHINE neutrino program
- Current and new results
- Upcoming data sets
- New opportunities

Neutrino beam physics

- Modern long-baseline oscillation experiments use "conventional" beams: primary protons strike a target, secondary mesons enter a decay region, and they decay in flight to neutrinos upstream of a beam stop
- All have common properties:
 - Predominantly v_{μ} , with v_e contamination at the ~1% level from muon, kaon decays.
 - Even "narrow-band" beams tend to have tails to high energy
 - Fluxes have significant systematic errors

Flux from a neutrino beam

• Neutrino flux comes from:

- Pions, kaons produced directly from primary p+C interactions
- Also produced from re-interactions of secondary p,π in the target
- Secondary particles from target focused in a series of horns
 - Horns contain substantial amounts of aluminum, which also acts like a secondary target
- All of these sources of mesons contribute significantly to the neutrino flux.

Understanding the flux

- Use Monte Carlo techniques to simulate the beam, but this is generally a very complicated and challenging environment. Uncertainties can be large: 20-50% with standard simulation tools.
- Monte Carlo must simulate:
 - Interaction of proton in target
 - Production of pions, kaons in target
 - Propagation of particles through horn (scattering, interactions, field)
 - Propagation through decay volume and loss in beam absorber
 - Meson decays to neutrinos, muons

All of these require knowing hadron interaction physics!

Targets

- Graphite target, like most modern beams
- 90 cm long: ~2 λ 0 in beam direction, to maximize interactions
- 2.5 cm diameter: Should be wide enough to contain the primary beam, but narrow enough to allow interaction products with average pT to escape the side
- Primary beam radius is large (6mm) to reduce local intensity and thermal shock
- Target cooled by very high velocity helium gas in closed loop

Primary beam energies for current and near future neutrino beams

T2K, T2HK: 30 GeV/c p

NuMI: 120 GeV/c p

LBNF/DUNE: 60-120 GeV/c p

Understanding a neutrino beam

- Two complementary techniques needed to understand the beam well enough to do oscillation measurements
 - Near neutrino detector
 - Goal is cancellation of flux uncertainties in near/far ratio.
 - Not perfect for constraining flux, due to neutrino cross-section (don't cancel if detectors are different) and reconstruction uncertainties, and parallax effects due to being near an extended neutrino source
 - Measurement of pion, kaon production and interactions
 - Essential for measuring neutrino interaction cross-sections
 - Reduces oscillation systematic errors

Monte Carlo generators

- Neutrino experiments use hadronic interaction generators including FLUKA, GEANT4 with various physics lists
- But these generators have
 very large

disagreements with one another: 20%+ is common, or even factors of two for kaon production!

• Very important to have constraints on the hadronic processes

Flux of FNAL's NuMI neutrino beam with different physics generators

External measurements of meson production

- Until recently, depended on fits to multiple measurements at different labs with different beam energies
- These measurements were made many years ago for other purposes, and had varying applicability to neutrino beams
- Significant issues with combining systematic errors across very different experiments
- Model dependence in extrapolating from different energies, target nuclei

Dedicated experiments

- In recent years, a loose program of hadron production measurements specifically for neutrino experiments has been underway
- HARP (CERN PS)
- EMPHATIC (FNAL MI)
- NA61/SHINE (CERN SPS)

NA61: The <u>SPS Heavy Ion and</u> <u>Neutrino Experiment</u>

- Fixed-target experiment using H2 beam at CERN SPS
- ~150 collaborators.
 Spokespeople: Marek
 Gazdzicki, EDZ (deputy)
- Designed around the former NA49 heavy-ion spectrometer
- Primary proton beam from CERN SPS, Secondary beams ~25 to 350 GeV/c

NA61: The SPS Heavy Ion and Neutrino Experiment

- Diverse physics program includes
 - Strong interactions/heavy ion physics
 - Onset of QCD deconfinement
 - Search for critical point
 - Open-charm production
 - Hadron production for neutrino beams
 - Cosmic ray production
 - Hadron production for air-shower model predictions
 - d/d production for AMS experiment
 - Nuclear fragmentation cross-sections

NA61 detector system

- Detailed beam instrumentation including PID and tracking before the target
- Several large-acceptance TPCs, two superconducting analysis magnets
- Scintillator-based time-of-flight detectors
- Projectile Spectator Detector: forward hadron calorimeter

Particle identification

Event display

NA61/SHINE operational eras

- Multi-phase program of hadron production measurements dedicated for neutrino physics
- Major upgrades during each Long Shutdown
- Plans continue to evolve for future upgrades and operations

Twin approaches: thin- and replica-target measurements

- Need thin-target measurements to measure physics cross-sections (total inelastic and production cross-sections, and differential spectra), for inputs to generators
- Need measurements on replica (~meter-long) targets of same material and geometry as neutrino production targets.
 - Measure both beam survival probability and differential yields.
 - Have to make measurements specifically for each neutrino beam.
 - Usually use results to re-weight particles in beam MC at surface of target

Graphite thin target (1.5 cm, 3.1% of λ_{I})

NA61/SHINE measurements for T2K

- NA61/SHINE took thin- and thick- target data with 30 GeV/c protons specifically for T2K in **2007 (thin) 2009 (thin and replica)**, and **2010 (replica)**.
- Eight NA61/SHINE publications have come out of these data sets

THIN TARGET		
Total xsec, pion spectra	Phys. Rev. C84 034604 (2011)	
K+ spectra	Phys. Rev. C85 035210 (2012)	
K^{0}_{S} and Λ^{0} spectra	Phys. Rev. C89 025205 (2014)	
$\pi^{\pm}, K^{\pm}, p, K^{0}_{S}, \Lambda^{0}$ spectra	Eur. Phys. J. C76 84 (2016)	

T2K REPLICA TARGET		
methodology, π^\pm yield	Nucl. Instrum. Meth. A701 99-114 (2013)	
π^{\pm} yield	Eur. Phys. J. C76 617 (2016)	
π^{\pm} , K^{\pm} , p yield	Eur. Phys. J. C79 100 (2019)	
<i>p</i> beam survival probability	Phys. Rev. D103 012006 (2021)	

Thinp+C @ 30 GeV

Thin Target Results

- One angle bin shown here for illustration
- MC generators fail badly for kaons and protons
- Published in Eur. Phys. J. **C76** 84 (2016): also contains yields of negative particles and neutral strange particles (V^0).

- Exact target geometry of a particular neutrino beam (T2K: 90cm cylinder, NuMI/NOvA: 120cm of graphite fins)
- Most events have primary and secondary interactions in the target
- Measure particle yields vs not only p and θ , but also exit zalong target (and possibly ϕ for targets like NuMI's that aren't cylindrically symmetric)
- Also measure beam particle survival as additional constraint on σ_{prod}
- In neutrino beam MC, apply weights to particles at surface of target in the simulation

NA61 result: full differential yields from T2K replica target

- Eur.Phys.J. C 79
 2,100 (2019)
- Showing one angle bin of π⁺ for illustration.
 Also have π⁻, K[±], p yields

NA61/SHINE measurements for T2K

- Steady improvements to the T2K flux prediction (described in Phys.Rev. D87 (2013) no.1, 012001 and J.Phys.Conf.Ser. 888 (2017) no.1, 012064) as more NA61 data sets have been incorporated:
 - first thin-target
 - 2009 replica
 - 2010 replica data set (which added statistics and included kaon yields)

2015-18: A second phase of NA61 neutrino measurements

- Motivation: new coverage will be needed for future experiment DUNE, can help existing experiments as well in shorter term
- Project made specific upgrades:
 - Forward tracking system
 - New readout electronics for time-of-flight detector
- Data collected in 2015-18 for this program

NA61/SHINE results: total production cross-sections on nuclear targets

p (GeV/c)

NA61 2016-17 neutrino data Thin targets

2016	2017
p + C @ 120 GeV/c	π+ + Al @ 60GeV/c
p + Be @ 120 GeV/c	π+ + C @ 30 GeV/c
p + C @ 60 GeV/c	π⁻ + C @ 60 GeV/c
p + Al @ 60 GeV/c	p + C @ 120 GeV/c (w FTPCs)
p + Be @ 60 GeV/c	p + Be @ 120 GeV/c (w FTPCs)
π+ + C @ 60GeV/c	p + C @ 90 GeV/c (w FTPCs)
π+ + Be @ 60 GeV/c	

- Full particle yields and spectra from these data sets
- Goal with these measurements is to span the phase space of primary and secondary interactions in neutrino targets and surrounding materials
- Analysis is progressing on some, completed on others
- Each measurement will be a point for interpolation in MC generators

Thin-target charged hadron spectra

Thin Target: Charge

- Example: $\pi^+ + C$
- **Thin Target: Charged Hadron Production**
- Measured differential production yields (positively-charged shown, also measured negatives)

Coming soon: results on spectra from thin-target p+C @ 120 GeV

- This data set is high priority: represents the primary proton interaction in NuMI/NOvA/MINERvA.
- Relies on new Forward TPCs to provide forward acceptance (magnet doesn't bend beam-energy protons into the older TPCs) to see elastic, quasielastic events
- New tracking algorithm is used for integrating the FTPCs into the analysis:
 - Cellular automaton-based local tracking with Kalman filter for global track fit is in final development
- Superior identification of V⁰ events
- Expect results on charged and neutral particle yields from ~3 million interactions in a few weeks!

Coming soon: measurements with NuMI replica target

Took high

- statistics (18M events) in 2018 with 120 GeV protons
 Analysis
 - underway on hadron yields from this target
 - Asymmetric design means
 binning in φ
 becomes
 important

NuMI target analysis

- Calibration of detectors underway
- Main challenge is the very complicated geometry of the target, with azimuthal dependence
- NA61 acceptance is not uniform due to dipole analysis magnet!

Third phase: upgraded detector

- Many major detector upgrades recently completed.
 - New forward Projectile Spectator Detector module, reconfiguration of existing detector
 - Replacement of old TPC electronics with system from ALICE

TPC front-end cards

- New silicon vertex detector for open charm studies
- RPC-based replacement for TOF-L/R walls
- New beam position detectors
- New trigger/DAQ, combined with new electronics, will give a major upgrade in data collection rate (~100 Hz \rightarrow ~1 kHz)

Data collection: now and near future

- **Data collection has begun!** Expect 3-4 years of operation.
- Priorities will be:
 - Additional T2K replica-target running (underway) to increase statistics 20x from 2010 and measure high-momentum kaon yields
 - Kaon scattering with thin targets for secondary interaction modeling
 - LBNF/DUNE replica target (2024). This target will be at least 1.5 m long and may create some challenges for reconstruction.
 - Improved statistics as needed on multiple measurements

Long-target tracker

T2K Replica Target Results (Systematic Uncertainties)

Inagai

T2K

 A leading systematic error with the T2K replica target has been extrapolation of shallow-angle tracks backward to the target surface

-> Having additional tracker surrounding the targetlawing polyitic newstrapoly the target to help track extrapolation

- Additional tracking detectors at the end of the target will probably be needed for the longer LBNF/DUNE target as well as a more precise measurement for T2K
- Considering options such as silicon planes or a (more likely) a small TPC

Future after LS2/3: low-energy beam?

- Many groups are interested in hadron production with beams in the 1-20 GeV region, below the range the current H2 beam is capable of providing
 - Atmospheric neutrino flux
 - T2K/HyperK secondary interactions
 - Spallation sources, cosmic rays, others...
- Beam modifications under design at CERN, project being formed now after positive response from SPSC

T2K/HyperK wrong-sign flux uncertainties

Principle of a low-energy beam for NA61/SHINE

- New beam design ongoing by CERN beam group in collaboration with NA61/ SHINE.
- Goal is to have beam available in 2025, and again after the next Long Shutdown

NA61/SHINE++ Opportunities beyond 2025

- Interested in **low-energy data** at NA61/SHINE?
 - Or in other possible new beam/target combinations? Current beam will still be available.
- Open workshop on opportunities after the next Long Shutdown
- December 15-17 at CERN
- Technical issues and physics opportunities (let me know if you wish to present one)
- Look for posting on INSPIRE and Indico soon

Conclusions

- NA61/SHINE has provided unique and critical data to support the global neutrino program
- Efforts have reduced T2K's flux errors by factors of 4+
- A new set of analyses is coming out, geared toward the current Fermilab program
- More data sets coming in the next three years, with T2K and LBNF/DUNE targets
- Low-energy beam and other future options under study