

Measuring neutrino oscillations precisely:

Reducing Systematics in Water Cherenkov Detectors With the Water Cherenkov Test Experiment

09/07/2022

Dr Lauren Anthony

On behalf of the WCTE collaboration I.anthony@imperial.ac.uk

Water Cherenkov Detectors in Japan

- Excellent performance
 - 99% μ/e separation
 - 2% momentum resolution
 - 1° direction resolution

Past Kamiokande 0.7kt fiducial mass

Current

Super-Kamiokande 22.5kt fiducial mass

New technologies

L. Anthony

- Gadolinium (Super-Kamiokande)
 (See Magdalena Posiadala-Zezula's talk for SK)
- Water-based liquid scintillator (THEIA)
- Photo-detector modules (Hyper-Kamiokande/IWCD)
 (See Aurora Langella's talk for HK)

talk for

EM - shower

Neutrino Oscillation at T2K: Systematic Uncertainty

- T2K is currently limited by statistical uncertainty
- Future experiments will be systematics limited
- Largest uncertainty on electron like samples is Super-K detector uncertainty

	1H	$R\mu$			$1 \mathrm{R}e$	
Error source	FHC	RHC	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.9	2.8	2.8	2.9	2.8	1.4
Xsec (ND constr)	3.1	3.0	3.2	3.1	4.2	1.5
Flux+Xsec (ND constr)	$\parallel 2.1$	2.3	2.0	2.3	4.1	1.7
2p2h Edep	0.4	0.4	0.2	0.2	0.0	0.2
$\mathrm{BG}_A^{\mathrm{RES}}$ low- p_π	0.4	2.5	0.1	2.2	0.1	2.1
$\sigma(u_e),\sigma(ar u_e)$	0.0	0.0	2.6	1.5	2.7	3.0
NC γ	0.0	0.0	1.4	2.4	0.0	1.0
NC Other	0.2	0.2	0.2	0.4	0.8	0.2
SK	2.1	1.9	3.1	3.9	13.4	1.2
Total	3.0	4.0	4.7	5.9	14.3	4.3

P. Dunne, Neutrino 2020, https://zenodo.org/record/4154355

Water Cherenkov Detector Limitations: Secondary Interactions

Ring 3 Super-K uncertainty includes detector effects and Charge Exchange Scatter uncertainties in secondary interactions of pions Ring 1 Ring 4 Ring 2 and nucleons Quasi-elastic Scatter Little data and very difficult to model ٠ Super-Kamiokande

Water Cherenkov Detector Limitations: Energy scale

Super-Kamiokande currently has 2% momentum resolution

- Detector energy scale uncertainty impacts oscillation analysis
 - Systematic errors present degeneracies in oscillation parameters
- Degenerate with $\delta_{\it CP}$ in e-like samples and with Δm^2_{32} in $\mu\text{-like}$ samples
- Develop calibration program to reduce uncertainty on energy scale as much as possible

L. Anthony

Working towards reducing detector systematics: The Water Cherenkov Test Experiment (WCTE)

The Water Cherenkov Test Experiment (WCTE)

- Small scale Water Cherenkov detector to be commissioned at CERN in 2023/24
 - Potential to become platform for neutrino measurements at CERN
- Study detector systematics and response 200 MeV/c 1000 MeV/c
- ~3.8 m * 3.8 m cylindrical detector
 - Proposal document can be found here: <u>http://cds.cern.ch/record/2712416/files/?ln=en</u>

• Studies of Cherenkov light production/processes

- Study at low momenta near Cherenkov threshold
- Delta rays and scattering make Cherenkov angle calculations more challenging

Energy scale calibration

- At Super-K the current systematic uncertainty on overall energy scale is 2%
 - Needs to reduce to 0.5% for Hyper-K

Secondary neutron production

Used for neutrino/anti-neutrino tagging in Super-K-Gd and Hyper-K

Pion scattering

- Reconstruction of Pions in final state is challenging
 - Limited hadronic scattering data on Oxygen and hard to model

T9 beam line in the East Area - secondary particle beam with momenta ranging from ~400 MeV/c to ~1500 MeV/c

- 40m long secondary beamline
 - Lower energy Pions decay in flight
 - Need tertiary production target

Imperial College London T9 Beamline @ CERN

Two beam configurations available in T9 area - Momentum range 200 – 1200 MeV/c

- 1. Tertiary beam position for low momentum pion and proton fluxes
 - There may be an option to use only one beam position if the low momentum beam tuning goes well later this month

T9 Beamline @ CERN

Two beam positions available in T9 area

1. Secondary beam position for electron, muon and proton fluxes

Imperial College London WCTE Detector Instrumentation

- Nineteen 8cm diameter PMTs (Hamamatsu R14374) multi-PMT modules (mPMT)
- Improved granularity and timing compared to larger PMTs
- Integrated LED calibration system within mPMT module

Imperial College London WCTE Detector Design

- Calibration deployment system mounted on support structure and lid
- Permanently deployed inside detector

Mounted cameras

WCTE Calibration: CDS

CDS – **C**entral **D**eployment **S**ystem Designed for the **W**ater **C**herenkov **T**est **E**xperiment

3 Axis System

- X Laser ball from vertical center line, radially to edge
- Y Rotation around tank +/- 180 degree
- Z Laser Ball vertical +/- in tank

- Sources
 - Isotropic light source
 - Camera for photogrammetry
 - Radioactive source

WCTE Calibration: Isotropic Light Source

- Imperial group is designing/fabricating a laser diffuser ball and associated deployment system for HK/IWCD/WCTE to measure:
 - Geometry
 - Water
 - Reflections
 - PMT response
 - Timing

- Build on SNO/SNO+/DEAP3600 design
 - Quartz flask
 - Suspended glass spheres
 - Optical gel
- Using WACKER silgel
 - 612 (softer setting)
 - 604 (harder setting)
 - 3M glass microspheres @ 0.4% by mass

L. Anthony

Prototype @ Imperial: CDS

Summary

- T2K has made some of the most precise measurements of neutrino oscillation parameters
 - Will eventually become stats limited -> Build bigger detector!
 - Even with bigger detector we will become systematics limited
 - Build an intermediate detector to measure Xsec!
 - Build a test experiment to improve methods of reducing detector systematic errors!
- Reduce detector systematics using a test experiment (WCTE) to:
 - Test new technologies
 - Measure secondary particle interactions
 - Performing in depth simulations and reconstruction studies
 - Demonstrate 1% level detector calibration
 - Custom calibration systems!
 - Crucial for future experiments!
- WCTE Recommended by SPSC for beam time in 2024 new collaborators welcome! Feel free to get in touch if you are interested.

Backup

Neutrino Oscillation: Theory

• The PMNS matrix describes neutrino oscillation as a product of 3 matrices corresponding to 3 different neutrino sectors:

$$U_{\alpha i} = \begin{pmatrix} \text{Atmospheric} - \Delta m_{23}^2, \theta_{23} \end{pmatrix} \begin{pmatrix} \text{Reactor/Accelerator} - \Delta m_{31}^2, \theta_{13} \end{pmatrix} \begin{pmatrix} \text{(Solar} - \Delta m_{12}^2, \theta_{12}) \\ \hline \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Parameterized by 3 mixing angles and a CP violating phase delta
- Non-zero off diagonal elements implies that a neutrino of one flavour is a combination of multiple mass states
- CP violating phase has been constrained to be in this region:

 α corresponds to neutrino flavour (e, μ , τ) *i* corresponds to the neutrino mass eigenstate *c* corresponds to cosine s corresponds to sine δ corresponds to the CP violating phase

The T2K Experiment

- Physics goals:
 - Measure neutrino oscillation parameters in v_{μ} disappearance
 - Search for CP violation in neutrino sector
 - Neutrino *X*_{sec} measurements using near detectors

T2K Experiment: Super-Kamiokande

- 50kton water Cherenkov detector ~ 40m * 40m
- ~11000 20" Hamamatsu
 PMTs in the inner detector
- ~2000 8" Hamamatsu PMTs in the outer detector

T2K Experiment: Data

- Super-Kamiokande has been in operation for ~25 years
- T2K has been taking data for ~10 years
- Made some of the most precise measurements of neutrino oscillations

P. Dunne, Neutrino 2020, https://zenodo.org/record/4154355

L. Anthony

Imperial College London Neutrino Oscillation at T2K: Results

Neutino Oscination at 12K. Nesun

World leading measurements of atmospheric neutrino parameters

Small preference to non-maximal $sin^2\theta_{23}$ in upper octant

 θ_{13} measurement @ T2K is consistent with constraint from reactor neutrino experiments

Imperial College London Neutrino Oscillation at T2K: Results

World leading measurements of atmospheric neutrino parameters

PMNS best fit around maximal CP-violation Weak preference for normal ordering Weak preference for upper octant

Large region excluded at 3σ CP conservation at $(0,\pi)$ excluded at 90% confidence level

Imperial College London Neutrino Oscillation at T2K: Results

PMNS best fit around maximal CP-violation Weak preference for normal ordering Weak preference for upper octant

Large region excluded at 3 sigma CP conservation at (0,pi) excluded at 90%

Future of the T2K Experiment

Hyper-Kamiokande

- Long baseline measurements using 1.3MW bean x 6 cycles/year x 10years
 - Fiducial mass of 188 kton ~40000 PMTs in the inner detector
- Combination of 20" PMTs and "multi-PMT" modules
- Higher statistics than Super-K

Imperial College London Neutrino Oscillations @ Hyper-Kamiokande

L. Anthony

Future T2HK Experiment

Far detector New Intermediate Detector!

T2HK Experiment: Intermediate Water Cherenkov Detector (IWCD)

To help address the systematic uncertainty limitation in Hyper-Kamiokande, the "Intermediate Water Cherenkov Detector" (**IWCD**) has been proposed.

- 300t water Cherenkov detector
- Measure neutrino X_{sec} with same angular resolution as the far detector
- Detect small
 v_e presence in the unoscillated beam

T2HK Experiment: Intermediate Water Cherenkov Detector (IWCD)

- Simultaneous fit of 3 samples
 - 1-ring e-like FHC/RHC
 - 1-ring µ-like FHC/RHC
 - NC π^0 -like FHC/RHC
- Fit in one and two dimensions to extract v_e and $\overline{v_e} X_{sec}$ errors
- Apply X_{sec} errors to HK oscillation analysis

Constraint	Error on $v_e / \overline{v_e}$ event rate ratio at HK (%)	
Theory	4.92	
IWCD	3.78	

WCTE Simulation

- Using Water Cherenkov Simulation (WCSim) software to produce detector simulations
 - Open source GEANT4 based software developed for simulating large water Cherenkov detectors: <u>https://github.com/WCSim/WCSim</u>
 - Included mPMT modules and calibration system
 - Calibration system included by importing CAD model into GEANT4 using open source CADMesh software: <u>https://github.com/christopherpoole/CADMesh</u>

WCTE Detector Design

Detector:	Mass Kg
Vessel (inc movement sys)	4,700
mPMT Support Structure - populated	7,000 (each mPMT <i>@</i> 41Kg)
Lid	1400
Water	42,000
CDS (total CDS)	200
Total Approx.	55,250

Section of Tertiary Beam into Detector

Section of Secondary Beam into Detector

WCTE Detector Design

WCTE Detector Design

Detector	Dimension mm
Diameter of Vessel OD	3800
Outermost Diameter	3960
Height*	4180

*Height from top of lid to the rollers

Movement System

WCTE Calibration: CDS

- Whole system and isotropic light source being designed and built at Imperial
- Movement in 3 axes
- Deploy sources at user defined calibration points
- Sources
 - Isotropic light source
 - Camera for photogrammetry
 - Radioactive source

Isotropic Light Source

- Umbilical Termination
 - Uses ThorLabs bulkhead HAFC connector to mate fibre with quartz rod
 - Sealed connection with optical gel to remove any air gap
 - Parts being fabricated at Imperial for prototype
- Weight will also be mounted around clamp and will use fluid seal to ensure is water tight

Imperial College London Prototype @ Imperial: Diffuse Light Source

• Developing, building and testing a laser diffuser ball based on the SNO+ design

Photogrammetry

P. de Perio, N Prouse

•Detector geometry and source position measurements using stereoscopic reconstruction with photographs

•Mitigate uncertainties due to:

Construction tolerances / imperfections

•Stretching / twisting of support structure

due to PMT buoyancy

Source deployment positioning

Similar to aerial topographical surveying

Photogrammetry

P. de Perio, N Prouse

Overview of photogrammetry analysis

Photogrammetry

P. de Perio, N Prouse

L. Anthony

Radioactive Sources

J. Renner

- NiCf Isotropic gamma source ٠
 - Based on Super-K calibration source ٠
 - Used to study water quality ٠

(https://arxiv.org/abs/1307.0162)

6.5 kg of NiO and 3.5 kg

Isotropic gamma

Developing prototypes and simulations for WCTE ٠

> $^{241}\text{Am} \rightarrow \,^{237}\text{Np} + \alpha$ ${}^{9}\text{Be} + \alpha \rightarrow {}^{12}\text{C} + n + \gamma$

- AmBe neutron source ٠
 - Used for neutron tagging studies and Gd concentration ٠