

High-energy neutrino measurements with FASERv

July 7th, 2022

Yosuke Takubo (KEK)

On behalf of FASER collaboration

ICHEP 2022, Bologna

FASERv in FASER

- <u>FASER</u> is a new experiment to search for new long-lived particles and measure cross-sections of neutrinos, that are produced in pp collisions at ATLAS Interaction Point (IP), starting in 2022.
- The detector is installed 480 m downstream of ATLAS IP (TI12).
- <u>FASERv</u> is a part of FASER detector dedicated for neutrino measurements.
- FASER will be the first experiment to study three-flavor neutrinos at TeV energies.

FASERv detector (Emulsion detector)

- 700 layers of an emulsion film and 1.1 mm tungsten plate
 > 25 cm × 30 cm × 1.1 m, 1.1 tons, 220 X₀
- The emulsion films will be replaced every 30-50 fb⁻¹ during LHC technical stop.
- Measured particle (muon) flux was ~500 Hz at FASER with 2×10^{34} cm⁻²s⁻¹ in 2018 run which gives an acceptable detector occ. for physics.
- Measured radiation level was low enough for detector performance requirements ($<5 \times 10^7$ 1MeV n_{eq} /year).

FASERv detector (IFT & Veto)

- Silicon strip tracker (IFT: InterFace Tracker) is used as the interface for tracking with FASER spectrometer behind it.
 - > Charge identification of muons is possible with three 0.55 T dipole magnets in the spectrometer (3.5 m length in total).
- Veto scintillator system at the most front part of FASERv rejects charged particles coming from the upstream.
 - > Allows matching of the signal muon tracks in IFT and spectrometer.

Charged current interaction (1)

- FASERv will measure neutrino cross-sections at TeV region which is uncovered by existing experiments. **Expected # of CC interaction with 150**
- All neutrino flavors in Charged Current (CC) interactions can be identified including τ -neutrino, thanks to excellent position resolution of the emulsion detector.

fb⁻¹ @FASERv [PRD 104, 113008 (2021)]

Generators		FASER _ν		
Light hadrons	Heavy hadrons	$ u_e + \bar{\nu}_e $	$ u_{\mu} + ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$
SIBYLL DPMJET EPOSLHC QGSJET	SIBYLL DPMJET PYTHIA8 (Hard) PYTHIA8 (Soft)	901 3457 1513 970	4783 7088 5905 5351	14.7 97 34.2 16.1
Combination (all)		1710^{+1746}_{-809}	5782^{+1306}_{-998}	$40.5^{+56.6}_{-25.8}$
Combination (w/o DPMJET)		1128^{+385}_{-227}	5346^{+558}_{-563}	$21.6^{+12.5}_{-6.9}$

Charged current interaction (2)

- CC cross-section will be measured at TeV region, and its consistency with Standard Model (SM) will be studied.
- The anomaly of the third generation coupling will be explored.
 > 4σ deviation from SM is reported in the quark-sector [here].
- The charge measurement in cooperation with spectrometer behind FASERv enables to separate v_{μ}/\bar{v}_{μ} .

Charged current interaction (3)

7

- There are large number of difference between generator predictions, especially for v_e and v_{τ} from large uncertainties in forward charm production.
- The forward charm production can be studied with v_e above 500 GeV in FASERv. Electron neutrino in FASERv

Pilot data-taking (1)

- The pilot runs took place for neutrino detection and flux measurement of charged particles at tunnels TI12 and TI18 in 2018.
 - > FASER/FASERv is installed at T12.
 - > TI18 is the tunnel at the same distance from ATLAS IP as TI12 but opposite side.
- Neutrino detection was performed with a 30 kg emulsion detector installed at TI18, collecting 12.5 fb⁻¹ of data (10 kg are used in the analysis).

Pilot data-taking (2)

• 18 candidates of the neutral vertex were detected.

Neutrino event candidates

- They are the first candidates of the neutrino interactions at a collider.
- 2.7σ excess of neutrino-like signal above muon-induced background is measured with a multivariate analysis.
- The results were published in [PRD 104, L091101 (2021)].

BDT outputs of observed neutral vertices

FASERv construction (1)

- 268 emulsion films (~20 m²) corresponding to ~30% of the full loading were produced in Japan for data-taking during commissioning period.
- 10 sets of a tungsten plate and emulsion film were assembled per module and vacuum-packed at CERN.

FASERv construction (2)

- The first emulsion detector was prepared in March 2022.
 - > 22 emulsion modules were housed in the emulsion box with tungsten plates for the remaining volume.
 - > This is ~30% of the full emulsion for commissioning, and it will be replaced with a full detector for the first physics at the end of July.
- IFT was built with spare ATLAS SCT modules with the same design as FASER main tracker, and the assembly was finished in July 2021.

11

FASERv installation

- Most of the FASER main detector was installed in spring 2020.
- IFT was installed in November 2021.
- The first emulsion box was installed in March 2022.
 - > Placed on the LOS (Line Of Site) to maximize the flux of all neutrino flavors (the trench dug allows this).
- The physics data-taking will start in July 2022.
- The emulsion films will be replaced 11 times every 30-50 fb⁻¹.

Test beam & commissioning

- MIP efficiency of the veto system was measured in testbeam at CERN-SPS H2 beam line, and better performance than the requirement (>99.98%) was obtained.
- The commissioning is ongoing by using cosmic and beam collisions at LHC.

Simulated neutrino events in FASERv

 ν_{τ} interaction (τ^{-} decaying to μ^{-})

interaction in the emulsion detector

hit events in the tracker of the FASER spectrometer

14

Summary & Conclusions

- FASERv is the detector in FASER experiment to measure cross-section of high energy neutrinos with ~1 TeV originated from proton-proton collisions at LHC.
 - > First experiment making use of beam collisions as neutrino source.
- FASERv can measure cross-section for all neutrino flavors, thanks to excellent position resolution of the emulsion detector.
- The first candidates of the neutrino interactions at LHC was observed in the pilot data-taking in 2018.
- Both the first emulsion detector and IFT were installed at FASER site.
 > The emulsion films will be replaced every 30-50 fb⁻¹.
- The data-taking will start in July 2022 at LHC Run3.
- A future 10 times larger upgrade of FASERv is being considered as a part of the proposed [Forward Physics Facility].

Collaboration & Foundation

FASER collaboration consists of 75 collaborators, 22 institutes, and 9 countries.

Neutrino flux v.s. distance from LOS

Neutral current interaction

- FASERv also measures cross-section of Neutral Current (NC) neutrino interactions [arXiv: 2012.10500].
- Non-Standard Interaction (NSI) can be explored in conjunction with measurement of CC cross-section.

DIS cross-section of CC/NC interactions

Expected sensitivity to NSI (up-quark)

Forward charm production

- Atmospheric neutrinos from charm decays (prompt neutrino) could be an important background for astrophysics neutrino observations.
 > Only upper limit was given by IceCube.
- $gg \rightarrow cc$ is the leading order for cham production in perturbative QCD.
- Proton-proton collision at LHC corresponds to ~100 PeV proton interaction with fixed target. Neutrino spectra measured at [10^{-4}]

Measurement of production cross-section of heavy mesons at LHC can provide constraint on the prompt flux (current syst. error is O(1)).

Charm/strange PDF

- There is a controversial prediction in which an additional charm component exists in a proton (so-called intrinsic charm).
- It only affects the forward charm production $(cg \rightarrow cg)$ in pp collisions, to which v_e/v_τ energy spectrum in FASERv is sensitive.

 μ^{-}

 W^+

 V_{cs}

s (+d)

Expected energy dist. of v_e/v_τ @FASERv

Theoretical interest in QCD

- FASERv can explore charm production (gg \rightarrow cc) at Q ~ 2 GeV with x ~ 10⁻⁷, where gluon saturation by color glass condensation appears.
- Measurement of muon/neutrino flux and energy spectrum constrains production of primary hadrons (mainly pions and kaons).
 - The results can be used to validate/improve cosmic ray MC, especially to understand muon excess.
 Muon excess from prediction

Astrophysics neutrino & prompt flux at IceCube

- Uncertainty on conventional atmospheric neutrino flux (Φ_{conv}) is ~30% and absorbs any uncertainty which influences the global flux norm.
- The cosmic ray spectrum parameterized as $\Delta \gamma_{CR}$ also affects the expectation of Φ_{conv} and prompt flux (Φ_{prompt}).
- Φ_{prompt} is a free parameter in the fitting and currently zero consistent.
- Astrophysical parameters ($\Phi_{astoro}, \gamma_{astro}$) are found to be almost independent from Φ_{prompt} .

Parameter	Best-Fit	68% C.L.
$\Phi_{ m astro}$	0.90	0.62 - 1.20
$\gamma_{ m astro}$	2.13	2.00 - 2.26
Φ_{prompt}	0.00	0.00 - 0.19

Correlation matrix of nuisance parameters

Astrophys. J. 833 (2016) 3

Muon excess in extensive air showers

- Excess of muons with respect to the prediction (8σ) are observed in cosmic ray experiments.
- The hadronic interaction models used for the prediction were developed by using results of measurement in LHC and SPS.
- Measurement of muon/neutrino flux at FASER/FASERv will provide feedback to the interaction model.

Gluon saturation in proton (2)

From F. Kling's presentation

Cham-associated neutrino events

- FASERv can measure neutrino interactions associated with D-mesons in the final states.
- 10-20% of neutrino interaction at FASERv is accompanied with Dmesons. **Fraction of neutrino events**
- The emulsion detector can identify Dmesons, measuring tracks and their decay products.

associated with D-meson @FASERv

Beauty-associated neutrino events (1)

- Results in measurements in of $B \rightarrow D^* \ell \nu$, $B \rightarrow K^* \ell \ell$ and $B^+ \rightarrow K^+ \ell \ell$ suggest lepton universality violation.
- The neutrino interactions in FASERv are the same as them, exchanging the internal/external lines in Feynman diagrams.

 $\mathcal{R}(D) = \frac{\mathcal{B}(B \to D\tau \nu_{\tau})}{\mathcal{B}(B \to D\ell \nu_{\ell})},$ $\mathcal{R}(D^*) = \frac{\mathcal{B}(B \to D^*\tau \nu_{\tau})}{\mathcal{B}(B \to D^*\ell \nu_{\ell})}$

Beauty-associated neutrino events (2)

- Since cross-section of these processes are suppressed by a factor of $O(V_{ub}^{2})\sim 10^{-5}$, beauty-associated neutrino events cannot be observed at FASERv in Run3 in SM.
 - > Expected number of the events: O(0.1)
- But, the observation means discovery of new physics.
- In addition, lepton universality violation in the third generation can be investigated with sensitivity to v_{τ} .

Sterile neutrino oscillation

- SM excludes possibility of neutrino oscillation in FASER condition.
 - \longrightarrow If appearance or disappearance events are observed, it indicates existence of sterile neutrino.
- For ν_e, FASERν has sensitivity to 2.7σ discovery region with Gallium detector [arXiv:1006.3244].
 Expected sensitivity to neutrino oscillation

