Sensitivity of DUNE to low energy physics searches

Clara Cuesta on behalf of the DUNE Collaboration
ICHEP 2022
July, 8th 2022
The Deep Underground Neutrino Experiment (DUNE)
The DUNE Collaboration

~1400 collaborators from
~200 institutions in
>30 countries + CERN

DUNE Collaboration Meeting, Fermilab, May 2022
Deep Underground Neutrino Experiment (DUNE)

DUNE aims at answering fundamental questions related to:

- The matter-antimatter asymmetry – Long baseline neutrino oscillations
- The Grand Unification of forces – Physics beyond the Standard Model
- The supernova explosion mechanism – Low energy physics

- New neutrino (ν_μ or $\bar{\nu}_\mu$) beam facility at Fermilab (LBNF), US.
- Near Detector at Fermilab to measure the unoscillated neutrino spectrum and flux constraints.
- Far detector composed by 4 x 17 kton liquid argon time-projection chambers (LArTPC) modules deep underground at SURF (Lead, SD, 1300 km baseline).
DUNE Far Detector

Credit: symmetry magazine
LAr TPC technology

- Liquid argon is inert, dense and naturally abundant.
- Strong electric field applied across the TPC to collect e- produced by energy loss.
- LAr is transparent to its own scintillation VUV light which can be used as an internal trigger and for complementary calorimetry measurement.

- Excellent 3D imaging – few mm scale over large volume detector.
- Excellent energy measurement capability – totally active calorimeter.
- Particle ID by dE/dx, range, event topology.
DUNE Far Detector

Located 1.48 km underground at Sanford Underground Research Facility in Lead, South Dakota (USA)

Four 17-kt LAr TPC modules

“2+1+1” model:
- FD-1 horizontal drift (HD)
- FD-2 vertical drift (VD)
- 1 LAr single phase (HD/VD)
- 1 “opportunity” module

ProtoDUNEs

Construction and operation of 1 kton-scale prototypes at CERN, critical to demonstrate viability of technology
DUNE Far Detector 1

Horizontal drift

- **3.6 m horizontal drift**
- Anode and Cathode Plane Assemblies (APA, CPA)
- **Charge collected** on 3 views, pitch 5 mm
- **Photon detectors:**
 X-ARAPUCA light guides + SiPM, embedded in APAs

A. Machado
M. García Peris
Vertical drift

- **6-m vertical drift** that maximizes active volume.
- **Printed Circuit Board**-based readout scheme makes detector assembly much simpler.
- **Photodetection system** deployed (X-ARAPUCA) on the central cathode plane + cryostat walls.
- Challenging technology.

[Image of DUNE Far Detector 2 with labels for Top charge readout planes, Cathode, Bottom charge readout planes, Field cage, Photon detectors, HV protection, charge readout planes, and ProtoDUNE-VD.]
Low energy events in DUNE
Low energy interactions in LAr

The DUNE FD is sensitive to ν's produced by the Sun and in core-collapse supernovae with $E \sim 5-100$ MeV.

1. Charged-current (CC) interaction on Ar
 $$\nu_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^-$$
 Dominant interaction
 $$\bar{\nu}_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{Cl}^* + e^+$$

2. Elastic scattering on electrons (ES)
 $$\nu_x + e^- \rightarrow \nu_x + e^-$$

3. Neutral current (NC) interactions on Ar
 $$\nu_x + {}^{40}\text{Ar} \rightarrow \nu_x + {}^{40}\text{Ar}^*$$

Possibility to separate the various channels by a classification of the associated photons from the K, Cl or Ar deexcitation (specific spectral lines for CC and NC) or by the absence of photons (ES).
MARLEY simulates tens-of-MeV ν-nucleus interactions in LAr
Reconstruction: LArSoft to identify interaction channel, ν flavor in CC events & incoming ν momentum

ν-e ES event (10.25 MeV e^-)

ν_eCC event (20.25 MeV ν)

VD and HD technologies are studied
Supernova neutrino burst

Credit: symmetry magazine
Supernova neutrino emission

For a supernova at 10 kpc from Earth.

- **Infall**: Core collapses, and a shock wave is formed. The medium is opaque even for neutrinos.
- **Neutronization**: Primarily ν_e escape, as messengers of the shock front breaking. ($<1\text{s}$) ν's powered by infalling matter.
- **Accretion**: (~10s) main part of the signal, the proto-neutron star sheds its trapped energy.
- **Cooling**: A lot of information about the supernova in this profile: flavor content and spectra of the ν's emitted change throughout these phases, and the supernova's evolution can be followed with the ν signal.
Supernova neutrinos

- **Core-collapse supernovae** are a huge source of ν’s of all flavors in ~10 sec.
 - 1-3 SN/century in our Galaxy (10 kpc).
 - DUNE will participate in SuperNova Early Warning System (SNEWS).
 - Measurement of the SN ν’s will provide information about:
 - **Supernova physics**: Core collapse mechanism, SN evolution in time, black hole formation.
 - **Neutrino physics**: ν flavor transformation, ν absolute mass, other ν properties (sterile ν’s, magnetic moments, extra dimensions...).
- **Diffuse background supernova ν’s** are also potentially detectable.

SN1987A
- ~25 neutrinos detected in Kamiokande, IMB, Baksan
- Confirmed baseline model
- Beginning of neutrino & multi-messenger astronomy
Expected Supernova burst signal in DUNE

ν_e flavor dominates.

LAr only future prospect for a large, cleanly tagged SN ν_e sample

<table>
<thead>
<tr>
<th>Channel</th>
<th>Garching</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu_e + ^{40}$ Ar $\rightarrow e^- + ^{40}$ K*</td>
<td>882</td>
</tr>
<tr>
<td>$\bar{\nu}_e + ^{40}$ Ar $\rightarrow e^+ + ^{40}$ Cl*</td>
<td>23</td>
</tr>
<tr>
<td>$\nu_X + e^- \rightarrow \nu_X + e^-$</td>
<td>142</td>
</tr>
<tr>
<td>Total</td>
<td>1047</td>
</tr>
</tbody>
</table>
Expected Supernova burst signal in DUNE

• Number of SN ν interactions scales with mass and inverse square of distance.

• At 10 kpc, DUNE will observe 100-1000 events and just a few events for a collapse in the Andromeda galaxy.
Expected Supernova burst signal in DUNE

- Expected event rates during early stages – the neutronization burst and early accretion phases - for the electron-capture model.
- The effect of different mass orderings is observed (depends on the model).
DUNE Supernova burst event triggering:

- It is essential to develop a redundant and highly efficient triggering scheme in DUNE.
- The trigger on a supernova neutrino burst can be done using either TPC or photon detection system information.
- Trigger scheme exploits the time coincidence of multiple signals over a timescale matching the supernova luminosity evolution.
- Preliminary trigger designs with maximum fake trigger rate (1/month).

Example: Photon detection system.
- Real time algorithm provides trigger primitives by searching for PMT hits and optical clusters, based on time/spatial information.
- >90% efficiency on a SNB at a distance up to ≥25 kpc, so it would cover the entire Milky Way.

Backgrounds will have a minor impact on reconstruction, but can affect triggering.
Solar neutrinos
Solar neutrinos in DUNE

- The sun produces a large flux of neutrinos with many that interact in DUNE.
- 8B and hep fluxes are detectable:
 - 8B flux used to extract the solar neutrino oscillation parameters).
 - Neutrinos from hep fusion: 3He + p \rightarrow 4He + e$^+$ + ν_e have not been observed yet.

- Dominant interaction channel is CC.
- Signal leaves an e$^-$ track + gamma cascade in TPC + scintillation light
- Need to trigger and identify
Solar neutrinos in DUNE

• DUNE will record an enormous amount of solar neutrinos \rightarrow several events/day/kt.

• Backgrounds are very important. Neutron capture dominates (9 MeV analysis threshold).

• Discovery potential for hep neutrinos in DUNE!

• Precision of neutrino mixing and fluxes.

• DUNE has favorable sensitivity for measuring Δm^2_{21}.

• On-going full DUNE study.
Conclusions
Conclusions

DUNE
DUNE experiment is sensitive to neutrinos with about 5 MeV up to several tens of MeV, the regime of relevance for core-collapse supernova burst neutrinos and solar neutrinos.

LOW ENERGY EVENTS
This low-energy regime presents particular challenges for triggering and reconstruction. DUNE’s TPC and PDS systems will both provide information about these events, and we have developed software tools that enable preliminary physics and astrophysics sensitivity studies.

SUPERNova NEUTRINOS
DUNE will have good sensitivity to the entire Milky Way, and possibly beyond, depending on the neutrino luminosity of the core-collapse supernova. The observation of a burst will also enable sensitivity to neutrino mass ordering, and potentially many other topics.

Solar Neutrinos
There is discovery potential for hep neutrinos in DUNE and perform a precision measurement of neutrino mixing and fluxes.
Thanks

Credit: Randall Munroe