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Motivation

We use liquid scintillator detector in neutrino experiments. Our final goal is the neutrino mass
ordering(NMO). We need high resolution to achieve that goal.

Therefore, we need much more accurate waveform analysis and reconstruction method, to make
use of total information in waveforms, and gain high energy resolution.
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Bayesian waveform analysis
We have

p(µ, t0|w) ∝ p(w|µ, t0)p(µ, t0)
where p(µ, t0) is a Bayesian prior.

waveform w

photon intensity µ
time offset t0
high resolution needed

event energy E
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event position ranalysis e.g.MLE

With maximum likelihood estimate (MLE), to estimate the event (E, t, r):

(Ê, t̂, r̂) = argmax
E,t,r

p(E, t, r|µ, t0,w) = argmax
E,t,r

p(µ, t0|E, t, r)p(E, t, r)

p(µ, t0|w)

Therefore, it is important to estimate µ and t0 with high resolution, to guarantee the resolution of latter steps.

It is a Poisson process from µ, t0 to PE sequence z, the expectation of this process is µφ(t − t0), the curve on the left figure. φ is a
normalized shape function. z = (t1, t2, . . .) represents the times of PEs.

p(w|µ, t0) =
∑̃
z

p(w|z)p(z|µ, t0)

BOOM

The coefficient space of z explodes be-
cause there are any number of possible
z. We need MCMC to sample the most
possible ones.
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Sample from Poisson process Convolution with single PE waveform

𝑧 = 𝑡1, 𝑡2, …

𝜇𝜙(𝑡 − 𝑡0)

𝒘

The MCMC steps in FSMP
We sample t0, z with Monte-Carlo Markov chain (MCMC).[1, 2] µ is estimated with MLE from posterior distribution. This algorithm
is called fast stochastic matching pursuit (FSMP). Fast Bayesian methods are used in calculating.[3]
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Bias and resolution

FSMP deals with total information from
waveforms, and gives us better accuracy
in both time and intensity measurements.
It opens the opportunity to boost energy
resolution (×1.07) and particle identi-
fication in PMT-based neutrino experi-
ments.

The resolution of µ is defined as√
Var[µ̂]/E[µ̂]√

Var[NPE]/E[NPE]

NPE is number of PEs; and the resolution
of t0 is defined as√

Var[t̂− t0]

Var[t̂ALL − t0]

t̂ALL is ideal estimator for t0 by truth PE
times.
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GPU acceleration
The FSMP algorithm is accelerated with batched method on GPU. The left 2 figures show what is batched method: a lot of waveforms
are operated together, instead of analyzing them one by one.
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FSMP performance

NVIDIA® A100

NVIDIA® RTX 2080 Ti

NVIDIA® RTX 2060 Max-Q

NVIDIA® Tesla K80

AMD Instinct™MI100 Accelerator

AMD Radeon™VII
AMD Radeon™RX 6700 XT

AMD EPYC™7702 (CPU)

The batched method performs 0.01 s/waveform with batched size 5000 on NVIDIA® A100, and it is faster than original algorithm on
CPU by 2 orders of magnitude.

Summary

•FSMP method could make use of total information in waveforms.

•FSMP performs fast on consumer GPUs, with high precision results.

•FSMP proves the practicability of the Bayesian method, and we are
willing to extend it to event reconstruction.
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