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Muon Collider

A muon collider has a great potential for high energy
physics [1]. It combines the high precision of ete™ col-
liders, with low level of bremsstrahlung and synchrotron ra-
diation, with the high center-of-mass energy and luminosity
of hadron colliders.

o IP 1
A
e
£
i
Al Muon collider Accalerator ring
d [ =10 TeV cantre-pd-mass enargy -'
i injecton i =10 km circemiarence
b
P
. 1 N - .-"'f
) . 7 N R "z ———
4 Ga\/ Targat, & decay o cooling Liw-anangy H&% :; { i
[proton and g bunching charnmel p dccelaration .
SOUINCE chanred -

Figure 1: Overview of a muon collider facility [1].

One of the main advantages of muons is that, as they are
point-like particles, the nominal center of mass collision en-
ergy is entirely available for the reaction. On the contrary,
the relevant energy for proton colliders is instead the center
of mass energy of the collisions between the partons that
constitute the protons. Fig.2 quantify this concept, show-
ing the center of mass energy a proton collider must possess
to be equivalent to a muon collider of a given energy |[2].
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Figure 2: Equivalent proton collider energy [2].

The physics reach of a muon collider is extremely inter-
esting and it vastly and generically exceeds the sensitivity
of the High-Luminosity LHC (HL-LHC). Fig.3 for example
compares the mass reach of several Beyond Standard Model
(BSM) states for different colliders. The 95% CL exclusion
is reported, instead of the discovery, as quantification of the
physics reach. Solid bars represent the projected HL-LHC
mass reach, while the reach of a 100 TeV proton-proton col-
lider (FCC-hh) is shown as shaded bars. The muon collider
reach, displayed as horizontal lines for F.,,, = 10, 14 and 30
TeV, exceeds the one of the FCC-hh for several BSM candi-
dates and in particular, as expected, for purely electroweak
charged states |2].
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Figure 3: 95% CL mass reach, at the HL-LHC (solid bars) and at the
FCC-hh (shaded bars). The tentative discovery reach of a 10, 14 and 30
TeV muon collider are reported as horizontal lines [2].

Dark Matter can also be studied at muon colliders in sev-
eral channels exploiting for example the disappearing tracks
produced by charged particles involved in the process [2].
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Beam-Induced-Background

The main challenges, that impact both the machine and detector design, arise from the short muon lifetime and the
harsh Beam Induced Background (BIB). BIB is due to electrons and positrons from muon decay and synchrotron photons
interacting with the machine components and the surrounding environment generating secondary particles. It depends on
beam energy and machine-detector interface (MDI).
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Figure 4: Kinematic properties of BIB particles entering the detector region: momentum (left), position along the beamline (middle) and arrival time
with respect to the bunch crossing (right) [3].

The most distinctive aspect of BIB particles at the Muon Collider is their extremely large number and low momentum:
about 4 x 10° particles exiting the MDI in a single bunch crossing depositing energy to the detector in a diffused manner.
Thanks to the tungsten nozzles, most of the BIB particles exit at a significant distance from the interaction point. Moreover,
there is a substantial spread in the arrival time of the BIB particles with respect to the bunch crossing, ranging from a few
nanoseconds for electrons and photons to microseconds for neutrons due to their smaller velocity |3].

Simulated detector performance
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Figure 5: Geometry of the simulated detector [3].
Track reconstruction at the Muon Collider is complicated by the presence of a huge number of hits in the silicon sensor

originating from the BIB. The "BIB-hits" are out-of-time with hard collision hits: applying a time window, the hit density
can be reduced by a factor of two as seen in Fig.6 left [3].
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Figure 6: Hit density in the different layers of the tracking detectors in a single event with full BIB overlay.
The density before (blue) and after (yellow) applying the timing cut is shown (right). Tracking performance
for single-muon events overlaid with BIB, as a function of pr (center). Momentum resolution Apr is shown [3]
divided by the p3. as a function of 6 [3].

Jet reconstruction is one of the most difficult reconstruction tasks, since almost all sub-systems are involved, and the impact
of the BIB is significant in all of them. Also in this case applying a time window allows to remove most of the BIB hits but
preserving the signal, as can be seen in Fig.7 left |3].
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Figure 7: Normalized hit time in ECAL barrel, for b-jets and BIB (right). Efficiency of b-jet reconstruction as a function
of truth-level jet 1 (center) and as a function of the truth-level jet pT (right, for |n| < 1.5) [3].

The photon reconstruction and identification performance were assessed in a sample of 100000 events with a single photon
per event. 40000 events were also reconstructed with the beam-induced background overlaid |3].
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Figure 8: Left: Photon reconstruction efficiency as a function of the photon energy.
Right: Electron reconstruction efficiency as a function of the electron energy [3].

In the muon system, BIB hits are concentrated in the endcaps around the beam axis, thus a simple geometrical cut allows to
get rid of almost all the BIB hits. This suggests using standalone muon objects to seed the global muon track reconstruction.
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