Experimentation, challenges, and detector requirements at the CEPC

Manqi Ruan

X sections & Luminosities

ICHEP 2022

Yields of the CEPC

- Tunnel ~ 100 km , baseline SR Power/beam 30 MW, upgradable to 50 MW
- CEPC (90 240 GeV)
 - Higgs factory: 4M Higgs boson (10 years, 2 IP, 50 MW)
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 4 Tera Z boson (2 years, 2 IP, 50 MW), 100 M W boson (1 year)
 - Precision test of the SM, measure W boson mass to 1 MeV level via threshold scan
 - Rare decay + QCD studies
 Low Energy Booster(0.4Km)
 - Flavor factory: b, c, tau
 - QCD studies
- Upgradable to ttbar threshold (360 GeV): 500 k ttbar event (5 years, 2 IP, 50 MW)
- SPPC (~ 100 TeV)

CEPC Collider Ring(50Km) IP

- Direct search for new physics
- Conjuder Ring Stress to CEPC g(HHH), g(Htt)
- ...

See also: 2205.08553

LTB

Heavy ion, e-p collision...

7/7/2022

TP4

IP3

Detector & Software

Full simulation reconstruction Chain with Arbor, iterating/validation with hardware studies

Z→2 jet, \checkmark H→2 tau ~5%

ZH \rightarrow 4 jets ~50% Z→2 muon H→WW*→eevv ~1%

ICHEP 2022

Reconstructed Higgs Signatures

Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

Right corner: di-tau mass distribution at qqH events using collinear approximation 7/7/2022 ICHEP 2022

Challenge: Collision/Event Rate

- $Z \rightarrow qq$ event rate higher than 100 k Hz.
- Collision rate: can be comparable to that of LHC.
 - 2.6 ms for ttbar operation
 - 385/154 ns for Higgs/WW scan
 - 15 ns for Z pole
- Compatibility of the sub-detectors: especially
 - Feasibility of the TPC:
 - Track distortion & correction induced by even the primary ionization
 - Power pulsing is difficult... more efficient cooling + optimization?
 - DAQ: Trigger-less mode, or at least software trigger (as LHCb upgrade)

Challenge: Beam condition

- Beam energy calibration
 - ~ 0.1 MeV at Z pole
 - ~ sub MeV at W threshold
 - ~ MeV at Higgs operation
 - ...with nature beam energy spread of $\sim o(1E-3)$
- Beam polarization monitoring
 - Transverse... (essential for the Resonance depolarization Method) and even longitudinal...
- Beam Luminosity Spectrum Monitoring, especially at top

Challenge: Forward region & MDI

- CEPC has very compact & difficult forward region design
 - Luminosity measurement requirement
 - At least 1E-4 for Z pole,
 - 1E-3 for W threshold scan, Higgs operation, and top runs
 - Micrometer level position stability & accuracy for Luminometer, et.al.
 - Very short L* (varies from 1.4 2 meter), but seems to be definitely installed inside the tracker volume
 - The beam background condition at the CEPC is yet to be quantified.
 While better flavor tagging performance strongly prefers small inner radius of the vertex system.
- Low material VTX system, with R_in as small as 20 mm, radiation hard...

Challenge: Solenoid

- To reach high luminosity at the Z pole operation, the B-Field of the main Solenoid shall not be higher than 2 Tesla
 - The beam X-angle (2*16.5 mrad) at the collision point induces correlations between the vertical & horizontal emittance..
 - Compared to 3 Tesla B-Field, 2 Tesla B-Field doubles the maximal Z pole luminosity
- However, a larger B-Field is strongly favored for Higher Energies.
 - Provide better momentum resolution, especially for the benchmark of Higgs to dimuon.
 - Constrains the beam background.
- Thus, a tunable Solenoid (2 to 3, or even higher) system, whose B-Field map can be monitored to a relative precision of 1E-4, and stable enough...

Performance requirements

- A clear separation of the final state particles: Identification of Physics Objects, and Improving the E/P resolution for composited objects, especially jets
 - Leptons, especially these inside jets
 - Composited objects:
 - Two/three body objects: Pi-0, K-short, Lambda, Phi, Tau, D meson...
 - More bodies: Tau & Jets
 - PFA: pursuing 1-1 correspondence...
- BMR (Boson Mass Resolution): mass resolution of Hadronic decayed Higgs/Z/W
 - < 4% for Higgs measurements</p>
 - Much demanding for Flavor Physics/New Physics Hunting
- Pid: Pion & Kaon separation > 3 σ (eff*purity of Kaon at Key processes > 60%...)
- Jet: Flavor Tagging & Charge Reconstruction, Color Singlet identification...
- Intrinsic accuracies: momentum, energy, VTX positions...

Massive Boson Separation

ICHEP 2022

7/7/2022

Eur. Phys. J. C (2018) 78: 426

- Boson Mass Resolution: relative mass resolution of vvH, H→gg events
 - Free of Jet Clustering
 - Be applied directly to the Higgs analyses
- The CEPC baseline reaches 3.8%

	BMR = 2%	4%	6%	8%
σ(vvH, H→bb)	2.3%	2.6%	3.0%	3.4%
$\sigma(vvH,H{\rightarrow}inv)$	0.38%	0.4%	0.5%	0.6%
σ(qqH, H→ττ)	0.85%	0.9%	1.0%	1.1%

13

Jet Flavor Tagging for Higgs measurement

Compared to Baseline, Ideal Flavor Tagging improve the $H \rightarrow bb$, cc, gg Measurements significantly, especially at qqH channel (up to 2 times).

Flavor Tagging can be improved by VTX optimization (i.e., reduce VTX inner radius) & better algorithms... 7/7/2022 ICHEP 2022 14

Bs→Phi vv

B0/Bs $\rightarrow 2 \pi^0/\eta$

ICHEP 2022

ᅇ

0.05

0.1

 $\sigma_{m_{\!_{R}}}[\text{GeV}]$

0.15

0.2

Summary

- CEPC, a precision & upgradable Higgs/W/Z factory, and a Discover machine!
 - 4 M Higgs, 100 Million 1 Billion W, 1 Million Top, and 3 Tera Z.
 - For Higgs precision measurements, secures the precisions ~ 1 order of magnitude better compared to HL-LHC
 - Boost the precision on EW, etc, by at 1-2 orders of magnitudes.
 - Lots of opportunities for flavor physics & significant comparative advantages.
 - Strong physics cases for BSM & QCD
- Lots of challenges

. . .

. . .

- High Rate (collision/event)
- Difficult MDI & Integration
- Solenoid with changeable B-Fields
- Beam monitoring/calibration: Energy, Luminosity Spectrum, Polarization

Summary

- On the performance side
 - Separation capability is critical, Especially for the flavor measurement at Z pole, where critical physics objects need to be identified inside jets.
 - BMR shall be at least 4%!
 - Improving the Jet Flavor Tagging has a significant impact on critical Higgs measurements.
 - Jet Charge measurement is a strong comparative advantages of Tera-Z
 - Good Pid is mandatory: pion-kaon separation shall be larger than 3-sigma
 - Better ECAL, Better tracking is always appreciated... especially for flavor measurements

- ...

• Lots of R&D activities, including design of new detector concept, is on going.

Back up

CP measurement with $Bs \rightarrow J/psi$ Phi

 $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H, \phi_s = -2 \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cs}^*)$

SM: small CPV phase ϕ_s

Contributions from physics beyond the SM could lead to much larger values of $\phi_s.$

Flavour tagging power

7/7/2022

ICHEP 2022

Kaon identification: dE/dx or dN/dx + ToF

Momentum [GeV/c]

10

1

	factor	1.	1.2	1.5	2.
	ε _K (%)	95.95	94.09	91.08	86.86
dE/dx	purity _K (%)	81.76	78.17	71.64	60.92
dE/dx	ε _K (%)	98.42	97.41	95.48	92.14
& TOF	purity _K (%)	97.88	96.31	93.18	87.19

CEPC-DocDB-id: 172 https://arxiv.org/abs/1803.05134 Eur. Phys. J. C (2018) 78:464

7/7/2022

0.1

of sigma

7

ICHEP 2022

100