

The micro-RWELL detector for the phase-2 upgrade of the LHCb Muon system

G. Bencivenni¹, R. De Oliveira², G. Felici¹, M. Gatta¹, M. Giovannetti¹, <u>G. Morello¹</u>, M. Poli Lener¹

on behalf of the LHCb Collaboration

- 1. Laboratori Nazionali di Frascati dell'INFN
- 2. CERN

Bologna, July 8th, 2022

The LHCb Upgrade II (Run 5-6)

The Muon system (MWPC+GEM) during Run1 & Run2 (1÷4 x 10³² **cm⁻² s⁻¹**) exhibited tracking **inefficiency**, from dead time, **at level of** 1% in Run1 and 2% in Run2 \rightarrow REMARKABLE!

Requirements for Run 5-6 (2035-2042):

- Rate up to 1 MHz/cm² per single detector gap; 600 kHz per pad
- Efficiency (station)>95% within a BX (25 ns) ٠
- Max input capacitance (double gap) \leq 100 pF
- Stability for 10 y of operation (up to 1 C/cm2)

PROPOSED SOLUTION: micro-RESISTIVE WELL technology

Each MWPC will be replaced with a **stack of 4 gaps** in the region **R1 and R2**

- R1÷R2: 576 gaps, size 30x25 to 74x31 cm², 90 m² det., 130 m² DLC ٠
- 768 gaps, size 120x25 to 149x31 cm², 290m² det. R3:
- 3072 gaps, size 120x25 to 149x31 cm², 1164 m² det. R4 :

For R3 and R4 region this technology is not a suitable solution due only to the large input capacitance of the detector.

> See L. Paolucci's talk "The LHCb Muon Detector Upgrades", July 9th, Parallel Session on Operation, Performance and Upgrade (Incl. HL-LHC) of Present Detectors

Preliminary

M3	M4 N	45		side C		∕▲	si
M2 M3							-
						R4	
							-
						R3	
						R2 R1	
						n pip	
		· · · · · · ·				bear	
-	_						_
		Ma	ximur	n exp	ecte	d rate	ć
		Rates (kHz	$/\mathrm{cm}^2)$	M2	M3	M4	M5
		R1		749	431	158	134
		R2		74	54	23	15
		R3		10	6	4	3
		R4		8	2	2	2
			0	1.6	1.6		1.6-
		Area (m ²)		M2	M3	M4	M5
		R1		0.9	1.0	1.2	1.4
		R2		3.6	4.2	4.9	5.5
		R3		14.4	16.8	19.3	22.2

side A

R1	749	431	158	134
R2	74	54	23	15
R3	10	6	4	3
R4	8	2	2	2
Area (m^2)	M2	M3	M4	M5
R1	0.9	1.0	1.2	1.4
$\mathbf{R2}$	3.6	4.2	4.9	5.5
R3	14.4	16.8	19.3	22.2
D4	576	67 4	77 4	88 7

The µ-RWELL technology at a glance

Developed in collaboration with CERN-EP-DT-MPT workshop

The features can be summarized:

- Spark suppression: presence of a resistive layer (Diamond-like Carbon) to quench sparks amplitude (like MM)
- Compactness: amplification stage
 (geometry like WELL and GEM) embedded
 in the PCB readout → multi-layer PCB std.
 industrial technology → mass production
 But the resistive layer introduces a local gain
 drop as the rate increases

Naïf model for the **average resistance** $\boldsymbol{\Omega}$ between the charge point collection and the perimetrical grounding line

- $= \frac{p_0(r)}{\alpha e N_0 G \pi r^2} \qquad \begin{array}{l} \alpha \text{ f} \\ N_0 \\ N_0 \\ R_0 \\$
 - α from the fit to the gain vs. applied ΔV N_o from GARFIELD++ simulation r radius of the X-rays spot d average distance to the ground

The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap

The charge induced on the resistive layer is spread with a time constant, $\tau \sim \rho \times C$

[M.S. Dixit et al., NIMA 566 (2006) 281]:

• $\rho \rightarrow$ the DLC surface resistivity

C → the capacitance per unit area, depending on the distance between the DLC and the readout plane

The μ-RWELL technology: the evolution

The **parameter** *d* becomes foundamental to produce detector for high rates purposes An extensive R&D has been conducted to optimize the DLC grounding to make the detector stand up to several MHz/cm²

The μ-RWELL technology: the evolution

The **parameter** *d* becomes foundamental to produce detector for high rates purposes An extensive R&D has been conducted to optimize the DLC grounding to make the detector stand up to several MHz/cm²

High-rate layouts: performance with X-rays

Energy of X-rays: 5.9 keV; ionization three times larger than a Mip in 6 mm gas gap

The μ-RWELL techology: measurements

2020 JINST 15 C09034

The µ-RWELL technology: the evolution

Geometrical PARAMETERS

Layout	GND pitch [mm]	Dead Area [mm]	DOCA [mm]	Geom. Acceptance	
PEP1	6 // 8	1	0.475	66%	
PEP2.1	8.9	0.8	0.375	91%	
PEP2.2	17.8	0.8	0.375	95.5%	

DOCA (Distance of Closest Approach): the minimum distance between a grounding line and an amplification channel.

The μ-RWELL technology: X- rays measurements

Because of the common effort in the scientific community to reduce the F-based components, we are changing our mixture to $Ar:CO_2:iC_4H_{10}$ 68:30:2 and starting the stability measurement

The μ-RWELL technology: X- rays measurements

Parallel acquisition of the T and P gas parameters to apply the corrections $e^{\frac{\beta T}{P}}$ H₂0 concentration down to 500÷600 ppm

after 10 years at LHCb (0.75 MHz/cm² mip) and 3 mm gas gap

Ar:CO₂:iC₄H₁₀ 68:30:2

The μ-RWELL technology: TT

Summary & outlook

- In view of Run 5-6 the LHCb collaboration demands detectors with rate capability up to several MHz/cm² and with good stability during operation
- We proposed this technology, micro-Resistive WELL, for the LHCb Run 5-6
- The most recent version of the detector fulfills the requirement on the rate capability; stability test is ongoing
- Due to the relative simplicity of the technology, the technology is being trasferred to the industry for the mass production

- Eco-gas mixture studies to be done
- Stability tests (X-ray, gamma/neutron irradiation)
- Mechanical improvement of some detector components (i.e. replacing FR4 with PEEK)
- TT to be continued with ELTOS company

Addendum

LHCb is NOT the ONLY collaboration focusing its attention to this technology. The micro-Resistive WELL is involved also in

- 1. FCC_ee: the muon system of the IDEA apparatus for a Future Collider (R. Farinelli's talk "The u-RWELL technology at the IDEA detector", this session)
- 2. CLASS12 @ JLAB: the upgrade of the muon spectrometer
- 3. EURIZON (under EU approval): the Inner Tracker based on cylindrical micro-RWELL for a super Charm-Tau factory (coll. with LOSON S.r.l)
- 4. X17 @ n_TOF EAR2: for the amplification stage of a TPC dedicated to the detection of the X17 boson
- 5. UKRI: neutron detection with pressurized ³He-based gas mixtures
- 6. TACTIC @ YORK Univ.: radial TPC for detection of nuclear reactions with astrophysical significnace
- 7. URANIA-V: a project funded by CSN5 for neutron detection, an ideal spin-off of the EU-founded ATTRACT-URANIA
- 8. Muon collider: hadron calorimeter

SPARE

LHCb experiment at CERN: (very) few highligths

The LHCb Upgrade II (Run 5-6)

Current LHCb apparatus https://cernbox.cern.ch/index.php/s/4axD3HOyfjLDMTC

Huge improvement of LHCb constraints to the apex of the unitarity triangle

- 4D-tracking in VELO
- Large Tracking Detector based on MAPS (downstream)
- Extensive use of timing of RICH and ECAL
- HCAL removed → replaced with shielding

LHCb experiment at CERN: (very) few highligths

- [5] LHCb collaboration, R. Aaij et al., Observation of CP violation in charm decays, Phys. Rev. Lett. 122 (2019) 211803, arXiv:1903.08726.
- [6] LHCb collaboration, R. Aaij et al., First observation of CP violation in the decays of B⁰_s mesons, Phys. Rev. Lett. 110 (2013) 221601, arXiv:1304.6173.
- [7] LHCb collaboration, R. Aaij et al., Observation of CP violation in two-body B⁰_s-meson decays to charged pions and kaons, JHEP 03 (2021) 075, arXiv:2012.05319.
- [8] LHCb collaboration, R. Aaij et al., Updated measurement of time-dependent CP-violating observables in B⁰_s → J/ψK⁺K⁻ decays, Eur. Phys. J. C79 (2019) 706, Erratum ibid. C80 (2020) 601, arXiv:1906.08356.
- [9] LHCb collaboration, Updated LHCb combination of the CKM angle γ , LHCb-CONF-2020-003.
- [10] LHCb collaboration, R. Aaij et al., Combination of LHCb results on the CKM angle γ and charm decays, LHCb-PAPER-2021-033, in preparation.
- [11] CMS and LHCb collaborations, V. Khachatryan et al., Observation of the rare B⁰_s → μ⁺μ⁻ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68, arXiv:1411.4413.
- [12] LHCb collaboration, R. Aaij et al., Test of lepton universality in beauty-quark decays, arXiv:2103.11769, submitted to Nature Physics.
- [13] LHCb collaboration, R. Aaij et al., Angular analysis of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay using $3 fb^{-1}$ of integrated luminosity, JHEP 02 (2016) 104, arXiv:1512.04442.
- [14] LHCb collaboration, R. Aaij et al., Observation of $J/\psi p$ resonances consistent with pentaquark states in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays, Phys. Rev. Lett. **115** (2015) 072001, arXiv:1507.03414.

The μ-RWELL technology: X- rays measurements

Setup

A lead square shielding, with length L larger than the active area and a circular window (r) is plugged on the cathode where r is larger than the grounding pitch. The thickness of the lead is 1 mm (~ 500 X₀)

The μ-RWELL technology: X- rays measurements

2021 JINST 16 P08036

The μ-RWELL technology: the FEE for LHCb

New ASIC design

- A new design based on FATIC2 (for FATIC see Anna Stamerra's talk) device is going on @ Bari (G. de Robertis/F. Loddo/F. Liciulli)
- Besides the majority logic the new device can make single channel time (shaping time from 25 to 100 ns) and charge measurements
- Better timing resolution if compared with the single majority time measurement

FATIC2 Block diagram

New ASIC block diagram

The μ-RWELL technology: the FEE for LHCb

Present readout electronics:

- The detector is made of **four gaps**
- The corresponding pads belonging to two different gaps are connected (physical OR)
- A **logical OR** of the two discriminated signal is then implemented
 - The four gaps OR generate a very high rate due of single-GAP background signal (low energy particles)

IpGBTx

New front-end electronics:

- background sensitivity reduction by requiring Nhit
 > 1 at front-end level (majority logic).
- Side effect : Nhit > 1 requirement can generate some inefficiency (MC studies are going on)
- New front-end electronics should be used to instrument also R3/R4 detectors (different pad density and pad capacitance)

μ-RWELL operation in ³He based gas mixtures

<u>Aim</u>

- Neutron scattering applications
- Small area (100x100mm²)
- High Efficiency(>70% at 25meV)
- High Position resolution (<0.5mm FWHM)
- Stopping gas to stop the range of the proton and triton of the reaction

 $n + {}^{3}He \rightarrow {}^{1}H + {}^{3}H + 770 \text{ keV}$

- Measurements of the gain with a gas mixture containing 1 bar of ³He and 1 to 6 bar of CF₄
- To date only MWPC and MSGC could operate at those gas pressures

<u>Setup</u>

- 50x50 active area
- Active volume 16mm thick
- Sealed vessel

(up to 7bar pressure)

• Neutrons from AmBe Source

μ -RWELL for TACTIC

TRIUMF Anular Chamber for Tracking and Identification of Charged particles

- Active-target detector with cylindrical geometry designed to study nuclear reactions with astrophysical significance
- Aims at efficient small reaction cross-section measurements at low energies
- Will use μ-RWELLs in a curved cylindrical geometry for detection of various reactions products of interest with a range of energies (tens of keV to few MeV)
- Total length of detection region (shaded yellow): 251.9 mm and radius: 53 mm
- μ-RWELLs are currently installed inside and first alpha signals were seen.
 Future tests with reference sources and with a stable beam are planned.

university

TEST

- Time projection chamber with planar geometry
- Test chamber dimensions: 150 mm x 480 mm x 120 mm
- Distance between cathode and µRWELL surface (drift gap): 30 mm
- μ-RWELL active area dimensions: 35 mm x 251.85 mm; μ-RWELL overall dimensions: 336 mm x 80 mm; Foil thickness: 0.2 mm
- Anode is segmented into 60 pads of width 4.2 mm
- Designed to test MPGDs and electronics for TACTIC

