

ALCE3

Nicolò Jacazio (Bologna University) on behalf of the ALICE Collaboration

ICHEP 2022 in Bologna - 07/07/2022

ICHEP 2022 6 XLI 13 07 2022

International Conference on High Energy Physics

Proposal for heavy-ion program in Run 5 and 6 with a next-generation experiment

- Concept developed in 2018 and submitted to Strategy Update meeting in 2019
- Three ALICE 3 workshops in 2020 and 2021
- Letter of Intent submitted to LHCC and reviewed late 2021/ early 2022
 - Very positive review and recommendation to proceed with R&D

ALICE beyond Run 4

New insights with Runs 3+4

- medium effects and hadrochemistry of single charm
- time-averaged thermal radiation from the quark-gluon plasma
- patterns indicative of chiral symmetry restoration
- **collectivity** from small to large systems

Precision measurements with Run 3 and 4 will help us understanding the QGP

More fundamental questions ahead!

significant improvement achieved after Run 4

• QGP properties driving its constituents to equilibration • microscopic mechanisms leading to strong partonic collectivity mechanisms for hadronisation from the quark-gluon plasma • partonic equation of state and its temperature dependence underlying dynamics of chiral symmetry restoration

QGP physics beyond Run 4

Precision measurements of dileptons

- accessing the evolution of the quark-gluon plasma
- mechanisms of chiral symmetry restoration in the quark-gluon plasma lacksquare

Systematic measurements of (multi-)heavy-flavoured hadrons

- accessing parton propagation mechanisms in QGP
- study equilibration of heavy quark equilibration and diffusion in QGP \bullet
- mechanisms of hadronisation from the quark-gluon plasma

Hadron correlations and fluctuations

- interaction potentials and charmed-nuclei
- susceptibility to conserved charges

To achieve all this, the next leap is needed in detector performance and statistics

 \rightarrow next-generation heavy-ion experiment! \leftarrow

Electromagnetic radiation

Accessing the QGP temperature

In Run 3 and 4:

• First measurement of average QGP temperature using thermal dielectron spectrum at $M_{ee} > 1.1 \text{ GeV/c}^2$

In Run 5 with ALICE 3:

- probe time dependence of the QGP temperature
- double-differential spectra: T vs mass, p_{T}
- Excellent pointing resolution
 - Large background for $M_{ee} \gtrsim 1 \text{ GeV/c}^2$ due to heavy-flavour decays can be effectively suppressed with ALICE 3
- Complementary to measurements with real photons

Projection for one month Pb—Pb with ALICE 3

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103

Chiral symmetry restoration

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103

Heavy quark correlations

Charm quark energy loss in QGP

Angular decorrelation of D^0D^0 mesons

 \rightarrow probe heavy quark rescattering in QGP Sensitive to:

- Energy loss mechanisms
- Heavy quark thermalisation

Strongest signal at low $p_T \rightarrow$ very challenging measurement

- Requires: high purity, efficiency and large η coverage
- Heavy-ion measurement possible <u>only with ALICE 3</u>

 $\Delta \phi$ (rad) 7

Pb-Pb could use the probability under two assumptions. Firstly, that the newly observed state has $J^{P} = 1^{+}$ and isospin I = 0 in accordance with the theoretical expecta-

tion for the T_{cc}^+ ground state. Secondly, that the T_{cc}^+ state is strongly coupled to the D*D channel. The derivation of \mathfrak{F}^U relies on the isospin symmetry for $T_{cc}^+ \to D^*D$ decays and explicitly accounts for the energy dependency of the $T_{cc}^+ \rightarrow D^0 D^0 \pi^+$, $T_{cc}^- \rightarrow D^0 D^0 \pi^-$, $T_{cc}^- \rightarrow$ the $\mathfrak{F}^{\mathrm{U}}$ function has two parameters: the peak location m_{U} , defined as the mass val the real part of the complex amplitude vanishes, and the absolute value of the coupling constant g for the $T_{cc}^+ \rightarrow D^*D$ decay.

The detector mass resolution, \mathfrak{R} , is modelled with the sum of two Gaussian functions with a common mean, and parameters taken from imulation, see Methods. The widths of the Gaussian functions are corrected by a factor of that a control of the Gaussian functions are corrected by a factor of that a control of the Gaussian functions are corrected by a factor of the transformation of the gaussian functions are corrected by a factor of the gaussian function. residual difference between simulation and data [39, 104, 105]. The root mea A study of the $D^0\pi^+$ mass distribution for selected π^+ combinations in the effector the resolution function is around $400 \text{ keV} c_{\odot}^2$

above the $D^{*0}D^+$ mass threshold and below $3.9 \text{ GeV}/c^2$ shows that approximately 90%

Excellent pointing resolution

- Excellent particle identification
 - Large acceptance
 - High rates, large data samples

Requirements for vertexing

Pointing resolution crucial for:

- dileptons
- heavy flavour

Target pointing resolution

Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime) ~10 µm @ p_T = 200 MeV/c \rightarrow 5x better than ALICE 2.1 Unique pointing resolution at mid-rapidity at the LHC!

Critical for this step:

- radius and material thickness of first layers
- minimum radius limited by LHC

ALI-SIMUL-491785

Vertex detector concept

Retractable vertex detector

3 layers within the beam pipe in secondary vacuum

- wafer-sized, bent Monolithic Active Pixel Sensors
- $\sigma_{pos} \sim 2.5 \ \mu m \rightarrow 10 \ \mu m \ pixel \ pitch$
- 1 ‰ X_0 per layer

rotary petals matching to beampipe parameters

- $R_{min} \approx 5 \text{ mm at top energy}$
- $R_{min} \approx 15 \text{ mm}$ at injection energy
- feed-throughs for power, cooling, data

R&D ongoing: challenges on mechanics, cooling, radiation tolerance

Pioneering with ITS3 R&D experience

retracted

Requirements for tracking $\sqrt{x/X_0} \propto \frac{\sqrt{x/X_0}}{P_1 I}$

Momentum resolution crucial for:

- dileptons
- heavy flavour
- jets

Target momentum resolution

Relative
$$p_{\rm T}$$
 resolution $\propto \frac{\sqrt{x/X_0}}{B \cdot L}$ (limited by multiple ~1 % up to $\eta = 4 \rightarrow$ large coverage

Critical for this step:

- integrated magnetic field
- overall material budget

 X/X_0

The outer tracker

Concept:

- ~11 tracking layers (barrel + disks) MAPS
- $\sigma_{pos} \sim 10 \ \mu m \rightarrow 50 \ \mu m$ pixel pitch
- $R_{out} \approx 80$ cm and $L \approx 4$ m (\rightarrow magnetic field B = 2 T)
- timing resolution ~100 ns (\rightarrow reduce mismatch probability)
- carbon-fibre space frame for mechanical support
- material ~1 % X_0 / layer \rightarrow overall $x/X_0 =$ ~10 %

R&D: build on the expertise of ITS2

Total silicon area ~ 60 m²

Particle identification with Time Of Flight

0.8

0.6

0.4

0.2

v/c

Critical for this step: $\sigma_{\rm tof}$

Separation power $\propto L/\sigma_{\rm TOF}$

- distance and time resolution crucial
- larger radius results in lower p_T bound

Concept:

- 2 barrel + 1 forward TOF layers
 - outer TOF at $R \approx 85 \text{ cm}$
 - inner TOF at $R \approx 19$ cm
 - forward TOF at $z \approx 405$ cm
- Silicon timing sensors ($\sigma_{TOF} \approx 20 \text{ ps}$)
 - R&D on monolithic CMOS sensors with integrated gain layer

Particle identification with Cherenkov light

Complement PID reach of outer TOF

system

- - refractive index n = 1.006 (forward)

Muon and photon identification

Muon chambers at central rapidity

- ~70 cm non-magnetic steel hadron absorber
- search spot for muons ~0.1 x 0.1 ($\eta \times \varphi$)
- ~5 x 5 cm² cell size
- matching demonstrated with 2 layers of muon chambers
 - scintillator bars
 - wave-length shifting fibers
 - SiPM read-out
 - possibility to use using RPCs as muon chambers

optimized for J/ψ reconstruction down to $p_{\rm T}$ 0 GeV/c

Large acceptance ECal (2π coverage)

- sampling calorimeter (à la EMCal/DCal): e.g. O(100) layers (1 mm Pb + 1.5 mm plastic scintillator)
- PbWO₄-based high energy resolution segment

critical for measuring P-wave quarkonia and thermal radiation via real photons

R&D activities

Silicon pixel sensors

- thinning and bending of silicon sensors
 - expand on experience with ITS3
- exploration of new CMOS processes
 - first in-beam tests with 65 nm process
- modularisation and industrialisation

Silicon timing sensors

- characterisation of SPADs/SiPMs
 - first tests in beam
- monolithic timing sensors
 - implement gain layer

Photon sensors

- monolithic SiPMs
 - integrate read-out

Detector mechanics and cooling

- mechanics for operation in beam pipe
 - establish compatible with LHC beam
- minimisation of material in the active volume
 - micro-channel cooling

R&D has already started!

- Unique and relevant technologies
- \rightarrow Synergies with LHC, FAIR, EIC, ...

Summary and conclusions

ALICE 3 will unravel the QGP dynamics

- Evolution of thermal properties of the QGP
- Chiral symmetry restoration
- Hadronisation and nature of hadronic states
- Exotic states and charmed nuclei

Innovative detector concept

- focusing on silicon technology
- building on experience pioneered in ALICE upgrades
- requiring R&D activities in several strategic areas
- R&D already started!

6 years of running with ALICE 3

Heavy ions: 1 month/year 35 nb⁻¹ for Pb-Pb

Under study:

 \rightarrow lighter species for higher luminosity

pp at $\sqrt{s} = 14$ TeV:

3 fb⁻¹ / year $\rightarrow \times 100$ compared to Run 3+4

Observables and requirements

Goal observables

Dileptons (p_T~0.1- 3 GeV/c, M_{ee} ~0.1-4 GeV/c²)

• vertexing, tracking, lepton ID

Photons (100 MeV/c - 50 GeV/c, wide η range)

electromagnetic calorimetry

Heavy-flavour hadrons ($p_T \rightarrow 0$, wide η range)

• vertexing, tracking, hadron ID

Quarkonia and Exotica ($p_T \rightarrow 0$)

- muon ID
- Jets
 - tracking and calorimetry, hadron ID

Ultrasoft photons ($p_T = 1 - 50 \text{ MeV/c}$)

dedicated forward detector

Nuclei and exotica

identification of z > 1 particles

Key requirements

- Good tracking down to $p_T = 0$
- Low-mass detector
- Excellent pointing resolution
- Excellent particle identication
- Large acceptance
- High rates, large data samples

Performance summary

Component	Observables	η < 1.75 (barrel)	1.75 < η < 4 (forward)	Detec
ertexing	Multi-charm baryons, dielectrons	Best possible DCA resolution $\sigma_{DCA} \approx 10 \ \mu m$ at 200 MeV.	ution, B /c o	Best possible DCA resolution, DCA ≈ 30 μm at 200 MeV/c	Retractable silico $\sigma_{pos} \approx 2.5 \ \mu m, R_{in}$ X/X ₀ $\approx 0.1 \ \%$ for t
acking	Multi-charm baryons, dielectrons	σ _p τ / p _T ~1-2 %		Silicon pixel track $\sigma_{pos} \approx 10 \ \mu m, R_{ou}$ X/X ₀ $\approx 1 \%$ / laye	
adron ID	Multi-charm baryons		π/K/p sepa up to a few	ration GeV/c	Time of flight: σ_{tot} RICH: aerogel, σ_{θ}
ectron ID	Dielectrons, quarkonia, χ _{c1} (3872)	pion rejection by 1000x up to ~2 - 3 GeV/ <i>c</i>			Time of flight: σ _{tot} RICH: aerogel, σ _θ possibly preshow
uon ID	Quarkonia, χ₀1(3872)	recon i.e. ı	struction of muons from	J/Ψ at rest, 1.5 GeV/c	steel absorber: L muon detectors
ectromagnetic alorimetry	Photons, jets		large accep	otance	Pb-Sci calorimete
	χc	high-resolution segment			PbWO ₄ calorimet
Itrasoft photon etection	Ultra-soft photons		n ir	neasurement of photons n pT range 1 - 50 MeV/c	Forward Convers based on silicon

Installation at LHC

Installation of ALICE 3 around nominal IP2

L3 magnet can remain, ALICE 3 to be installed inside Cryostat of ~8 m length, free bore radius 1.5 m, magnetic field configuration to be optimized

Running scenario:

6 running years with 1 month / year with heavy-ions

- 35 nb^{-1} for Pb—Pb x 2.5 compared to Run 3 + 4
- Lighter species for higher luminosity under study pp at s = 14 TeV:
- 3 fb⁻¹ / year x 100 compared to Run 3 + 4

