

ECCE forward physics and detector design at the future Electron-Ion Collider

ICHEP, Bologna 6–13 July 2022

Nicolas Schmidt (ORNL) for the ECCE Collaboration

The Electron-Ion Collider at BNL

- New electron accelerator and storage ring at RHIC as part of \$2B project
- More than 1300 physicists from over 250 institutes worldwide
- $\, \bullet \,$ Center-of-mass energies of $\sqrt{s} = 20 140 \, \, {\rm GeV}$
- High luminosity of $10^{33} 10^{34}$ cm⁻²s⁻¹ for e + p(A) collisions
- \bullet High polarization (\sim 70%) of both electron and ion beams
- Two interaction points for instrumentation

see talk by Silvia Verdú-Andrés

July 9, 2022

Select physics at the EIC

Gluon saturation

 \rightarrow possible signatures in back-to-back hadron/jet correlations or nuclear modification factor

Gluon TMDs

 \rightarrow constrained via quarkonium or charm jet production

- Nuclear modification of particle production
- PDFs and nPDFs in e−p and e−A collisions

 → strong constraints over large kinematic range
 → DIS kinematics require good tracking for jet and electron reconstruction
- Single particle measurements, e.g. $\pi^0 \rightarrow$ also needed for SIDIS or exclusive DIS
- Vast physics program outlined in Yellow Report!

EIC Yellow Report - arXiv:2103.05419

The ECCE detector at the EIC

EIC Comprehensive Chromodynamics Experiment

- Chosen as reference design for EIC project detector ${f 1}$
- Reuse of existing components
 - \rightarrow 1.5T BaBar solenoid, certain subdetectors and infrastructure
- Designed for IP6 and 25mrad crossing angle
 - \rightarrow compact design with \sim 8.5m length and \sim 2.7m radius

Backward Endcap

 \rightarrow PbWO4 ECal, MAPS tracking, mRICH and AC-LGAD PID

• Central Barrel

 \rightarrow SciGlass ECal, Fe/Sc sPHENIX HCal, MAPS and $\mu \rm RWell$ tracking, hpDIRC and AC-LGAD PID

• Forward Endcap

 \rightarrow Pb/SciFi shashlik ECal, Fe/Sc longitudinally separated HCal, MAPS tracking, dRICH and AC-LGAD PID

ECCE at the EIC

Forward tracking and PID

- Monolithic Active Pixel Sensor (MAPS) based tracking system \rightarrow 5 disks at different z positions with 10 μ m pixel size
- Tracking and TOF PID via AC-LGAD disk
 - \rightarrow derived from CMS ETL [CERN-LHCC-2019-003]
- Dual-Radiator Ring Imaging Cerenkov Detector (dRICH) ۲
 - \rightarrow Al-optimized design [JINST 15 (2020) 05, P05009]
 - \rightarrow excellent PID
- Tracking performance within boundaries set by Yellow Report ۵
- PID coverage over a wide kinematic range

rack∆p/

Forward calorimetry

- Forward ECal (FEMC) Pb/Sci shashlik
 → similar to ALICE, STAR and PHENIX ECals
 - \rightarrow 66 layers (1.6mm Pb + 4mm Sci) \rightarrow 18.5 X/X_0
 - \rightarrow 1.65 \times 1.65 \times 37.5cm towers

• Longitudinally separated forward HCal (LFHCAL) - Fe/W/Sci

- \rightarrow similarities with PSD calorimeter at NA61
- ightarrow 70 layers (16mm Fe/W + 4mm Sci) ightarrow 6.9 λ/λ_0
- \rightarrow 5 \times 5 \times 140cm towers
- ightarrow 7 longitudinal segments (10 layers each)

• Modern approaches for better performance

- ightarrow sub-Molière radius towers
- \rightarrow longitudinal separation
- $\rightarrow \mathsf{SiPM}\ \mathsf{readout}$

Energy resolution of calorimeters better than YR requirement

July 9, 2022

Forward calorimetry

- Forward ECal (FEMC) Pb/Sci shashlik
 - \rightarrow similar to ALICE, STAR and PHENIX ECals
 - \rightarrow 66 layers (1.6mm Pb + 4mm Sci) \rightarrow 18.5 X/X_0
 - \rightarrow 1.65 \times 1.65 \times 37.5cm towers

• Longitudinally separated forward HCal (LFHCAL) - Fe/W/Sci

- \rightarrow similarities with PSD calorimeter at NA61
- \rightarrow 70 layers (16mm Fe/W + 4mm Sci) \rightarrow 6.9 λ/λ_0
- \rightarrow 5 \times 5 \times 140cm towers
- ightarrow 7 longitudinal segments (10 layers each)

• Modern approaches for better performance

- \rightarrow sub-Molière radius towers
- \rightarrow longitudinal separation
- $\rightarrow \mathsf{SiPM} \ \mathsf{readout}$

• Energy resolution of calorimeters better than YR requirement

Physics performance prospects

Nuclear effects for jets and D⁰:

- Large statistics allow for precise D⁰ measurements \rightarrow high resolution tracking and vertex finding required
- Jet reconstruction profits from high tracking and calorimeter resolution
 → small number of constituents requires high efficience
- Charged jet energy resolution about 10–25% \rightarrow further improvements possible with full particle flow
- Jet R_{eA} probes anti-shadowing and EMC regions of nPDFs at large x \rightarrow clear suppression observed
- Jet R_{eA} double ratio approximately flat versus $p_T \rightarrow$ probes final state effects, but insensitive to < 10% effects within uncertainties

see talk by Xuan Li

Physics performance prospects

Nuclear effects for jets and D⁰:

- Large statistics allow for precise D⁰ measurements \rightarrow high resolution tracking and vertex finding required
- Jet reconstruction profits from high tracking and calorimeter resolution
 - \rightarrow small number of constituents requires high efficiency
- Jet R_{eA} probes anti-shadowing and EMC regions of nPDFs at large x
 → clear suppression observed
- Jet R_{eA} double ratio approximately flat versus $p_T \rightarrow$ probes final state effects, but insensitive to < 10% effects within uncertainties

Physics performance prospects

Nuclear effects for jets and D⁰:

- Large statistics allow for precise D⁰ measurements \rightarrow high resolution tracking and vertex finding required
- Jet reconstruction profits from high tracking and calorimeter resolution
 → small number of constituents requires high efficiency
- Charged jet energy resolution about 10–25% \rightarrow further improvements possible with full particle flow
- Jet R_{eA} probes anti-shadowing and EMC regions of nPDFs at large x \rightarrow clear suppression observed
- Jet R_{eA} double ratio approximately flat versus $p_T \rightarrow$ probes final state effects, but insensitive to < 10% effects within uncertainties

Summary and Outlook

- ECCE/Detector-1 designed to explore rich physics program at the EIC!
- Comparably low risk detector with reuse of several existing components
- Modern approaches for detector design (AI optimization, SiPM readout, ...)
- Technology choice evaluation via Geant4 simulations and testbeam data
- Physics performance presented for exemplary $R_{\rm eA}$ measurements

Towards EIC Project Detector 1:

- Further evaluation of detector performances and physics impacts
- Selection of final technologies
- Prototype design and testbeam studies
- First data in \sim 10 years

Backup

Forward calorimeter details

