

The Crilin Calorimeter: an alternative solution for the Muon Collider barrel

S. Ceravolo, E. Di Meco, **E. Diociaiuti**, D. Paesani, I. Sarra – LNF INFN F. Colao – ENEA Frascati C. Curatolo – INFN Sezione di Milano D. Lucchesi, L. Sestini – INFN Sezione di Padova A. Saputi – INFN Sezione di Ferrara N. Pastrone – INFN Sezione di Torino D. Tagnani – INFN Sezione di Roma 3 G. Pezzullo – Yale University

Introduction and Motivation

- Muon Colliders (MC) could represent the keystone for accessing the energy frontier of high energy physics
- Great potential, especially in the TeV range:
 - negligible synchrotron radiation ($m_{\mu}/m_{e}\sim 200$) \rightarrow high collision energy as in hadron colliders;
 - no significant beamstrahlung \rightarrow improved energy resolution for physics measurements.
- Challenging development due to the instable nature of muons (τ_{μ} = 2.2 $\mu s)$
 - Decay products of the circulating µ interacting with the machine elements → not so clean environment;
 - 4×10⁵ decays/m at 1.5 TeV with 2×10¹² µ/beam→O(10¹⁰) background reach the interaction region and enter the detector: Beam-Induced Background (BIB).
 - Very soft momenta;
 - Displaced origin w.r.t. the interaction region;
 - Asynchronous time of arrival w.r.t. the bunch crossing;

Beam Induced Background

Timing and longitudinal segmentation play a key role in BIB suppression

- At the ECAL barrel surface the BIB flux is 300 particles/cm², most of them are photons with <E>=1.7 MeV.
- Different energy release for signal and BIB event → possibility to subtract the BIB from longitudinal measurements

- The BIB produces most of the hits in the first layers of the calorimeter while muons produce a constant density of hits after the first calorimeter layers.
- Since the BIB hits are out-of-time w.r.t. the bunch crossing, a **measurement** of the hit time performed cell-by-cell can be used to remove most of the BIB;
- fast response (small integration window) is essentially to reduce energy contribution from BIB

Bartosik, Nazar, et al. "Simulated Detector Performance at the Muon Collider." arXiv preprint arXiv:2203.07964 (2022).

The Crilin Calorimeter: an alternative solution for the Muon Collider barrel

Crilin: an alternative solution

- Actual design of the ECAL: 40 layers of 1.9 mm W absorber + silicon pad sensors (64M channels for the Barrel)
 - 5x5 mm² cell granularity
 - 22 X₀ + 1 λ_i
- Crilin (Crystal calorimeter with longitudinal information) represent a valid and cheaper backup solution
 - Based on Lead Fluoride (PbF₂) crystals readout by 2 series of two UV-extended 15µm pixel SiPMs each.
 - Crystal dimensions are 10x10x40mm³ and the surface area of each SiPM is 3x3 mm², to closely match the crystal surface.
 - Modular architecture based on stackable submodules

Crilin barrel design for a Muon Collider

Radiation environment

- FLUKA simulations implementing the BIB yielded were carried out at $\sqrt{s} = 1.5$ TeV
- assuming 200 days of operation during a year in the ecal region
 - the neutron (1-MeV-eq) fluence is ~ 10^{14} cm⁻²/year
 - The TID is ~ 10⁻⁴ Grad/year

1 MeV neutron equivalent

Total Ionizing dose

07/08/22

Crystal radiation hardness

Radiation hardness of two PbF₂ crystals(5x5x40 mm³) checked for TID (up to 4.4 Mrad @ Calliope, Enea Casaccia) and neutrons (14 MeV neutrons from Frascati Neutron Generator, Enea Frascati, up to 10¹³ n/cm²)

- After a TID ~ 80 krad no significant decrease in transmittance -> saturation effect caused by the damage mechanism

07/08/22

SiPM radiation hardness

WY Solo

The main SiPM damage due to n irradiation is related to the increase of the dark current

 80 hours neutron irradiation (@FNG,ENEA Frascati) up to 10¹⁴ n/cm² for a series of two 10(15) μm SiPMs

Temperature[°C]	V_{br} [V]	$I(V_{br}+4V)$ [mA]	$I(V_{br}+6V)$ [mA]	$I(V_{br}+8V)$ [mA]
± 0.5	± 0.06	± 0.006	± 0.006	± 0.006
-10	76.58	2.188	8.193	35.137
-5	77.09	3.003	11.512	40.484
0	77.42	3.555	13.909	40.560

The Crilin Calorimeter: an alternative solution for the Muon Collider barrel

Crilin prototype

- Proto-0: 1 module composed of 2 crystals readout by 4 SiPMs
 - validate the design choices characterizing in detail the response of crystals and photosensors,
 - Good results from a Test Beam @H2 facility,CERN, in 2021

- Proto-1: 2 submodules assembled by bolting, each composed of 3x3 crystals+36 SiPMS (2 channel per crystal)
 - light-tight case which also embeds the front-end electronic boards and the heat exchanger needed to cool down the SiPMs.
 - SiPMs are connected via 50-ohm micro-coaxial transmission lines to a microprocessor-controlled Mezzanine Board which provides signal amplification and shaping, along with all slow control

Mechanics and cooling system

- Total heat load estimated: 350 mW per crystal (two readout channels)
- Cold plate heat **exchanger** made of copper mounted over the electronic board.
- **Glycol based water solution** passing through the deep drilled channels.

Time resolution studies: the setup

- Two 15 μm SiPM in serial connection + prototype of FEE electronics
- Picosecond UV laser source with variable intensity
- Signals digitized at 40 Gsps
- Three sets of measurements:
 - a) Fixed laser pulse amplitude (1 V),40 Gsps, laser repetition rate from 50 kHz up to 5 MHz;
 - b) Fixed laser pulse amplitude (1 V), 100 kHz laser repetition rate, sampling rate: (2.5 -40) Gsps
 - c) Sampling rate: 40 Gsps, laser repetition rate: 100 kHz, variable laser pulse amplitude

- Dynamic range: (0-2)V
- Fast rising edge ~ 2 ns;
- Full width of ~ 70 ns;
- Timing reconstruction performed using Constant Fraction method (~30% of Peak amplitude) on a lognormal fit.

The Crilin Calorimeter: an alternative solution for the Muon Collider barrel

Time resolution studies: first results (1)

Constant behaviour meaning that the **waveform stays unchanged in the 50 kHz-5MHz range**. Strong dependence from the sample rate since the **time resolution at 2.5 GS/s is twice the one at 40 GS/s**.

- A resulting 13 ps constant term contribution to timing resolution was evaluated on fitted data.
- Npe obtained using $N_{p.e.} = \frac{Q}{G_{FEE} \times G_{SiPM} \times e'}$, with $G_{FEE} = 7$ and $G_{SiPM} = 3.6 \times 10^5$
- σ_t <100 ps can be expected for energy deposits greater than 1 GeV

Conclusions

- Crilin^(a) is a semi-homogeneous calorimeter with longitudinal segmentation and excellent timing resolution;
- It represents a good compromise between homogeneous and sampling calorimeter and is well quoted as alternative solution to W-Si ECAL for future MC
- Before the construction of the Proto-1 (3x3 matrix) tests on single components have been performed:
 - Irradiation studies both with neutrons and photons on PbF₂ crystals^(b) indicated no significant damages up to 80 krad TID and 10¹³ n/cm² fluence*;
 - Neutron irradiation up to 10¹⁴ n/cm² on SiPMs
- Proto-1 is going to be assembled by the end of 2022 and a test beam with 500 MeV at the Beam Test Facility of the LNF as well as higher energy beam at CERN

Thank you!

(a) <u>Ceravolo, S et al., "Crilin: A CRystal calorImeter with Longitudinal InformatioN for a future Muon Collider" – Submitted to Jinst</u> (b) <u>Cemmi, A., et al. "Radiation study of Lead Fluoride crystals." Journal of Instrumentation 17.05 (2022): T05015.</u>

Beam induced background (BIB)

- BIB represents the main issues for the detectors;
- Very soft momenta;
- Displaced origin w.r.t. the interaction region;
- Asynchronous time of arrival w.r.t. the bunch crossing;

BIB in ECAL

Energy released in ECAL barrel by uniformly

Timing and longitudinal segmentation play a key role in BIB suppression

- At the ECAL barrel surface the BIB flux is 300 particles/cm², most of them are photons with $\langle E \rangle = 1.7$ MeV.
- Different energy release for signal and BIB event \rightarrow possibility to subtract the BIB from longitudinal measurements

Energy released in ECAL barrel by one BIB bunch crossing

Muon identification

- Muons and BIB leave two different signatures in the ECAL barrel:
 - The BIB produces most of the hits in the first layers of the calorimeter while muons produce a constant density of hits after the first calorimeter layers.
 - Since the BIB hits are out-of-time w.r.t. the bunch crossing, a measurement of the hit time performed cell-by-cell can be used to remove most of the BIB.

The Crilin Calorimeter: an alternative solution for the Muon Collider barrel

Test Beam

- CERN H2 beamline;
- Setup designed to allow measurements with 20-120 GeV electrons and tagged photons produced with 120 GeV electron beams

TestBeam-2

Crilin: a semi-homogeneous calorimeter for a future Muon Collider I Elisa Di Meco

Constant fraction and fit window

We minimized the time resolution scanning in CF and fit window upper limit. The fit window is given by: $[T_{peak} - 12 \text{ ns}, T_{peak} + T_{fit max}]$

Crilin: a semi-homogeneous calorimeter for a future Muon Collider I Elisa Di Meco

Irradiation sources

Calliope facility:

- pool-type gamma irradiation;
- 25 ⁶⁰Co source rods producing photons with E_y =1.25 MeV and an activity of 1.97×10¹⁵ Bq.

Irradiation Step	Dose in air [krad]	
Ι	30.2	
II	89.88	
III	2082	
IV	4031.8	
V	4435.5	

 Table 1. Irradiation steps and corresponding total dose absorbed by the crystals

FNG facility:

- Neutron source based on $T(d,n)\alpha$ fusion reaction;
- 14 MeV neutrons with a flux up to 10¹² neutrons/s in steady state or pulsed mode.

Electronics – SiPMs Board

The SiPMs board is made of:

- 36 15 μm Hamamatsu SiPMs →each crystal has two separate readout channels connected in series.
- Four SMD blue LEDs nested between the photosensor packages.

Electronics – Mezzanine Board

MEZZANINE BOARD FOR CRILIN EXPERIMENT

The Mezzanine Board for 18 readout channels:

- Pole-zero compensator and high speed noninverting stages;
- 2. 12-bit DACs controlling HV linear regulators for SiPMs biasing.
- 3. 12-bit ADC channels;
- 4. Cortex M4 Processors.

BLOCK DIAGRAM

Mezzanine board CAD

Muon Collider

