
Development of resource-efficient FPGA-based neural network regression model
for the ATLAS muon trigger upgrades
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Motivation
o Muons are important signature for the physics programme at the Large Hadron Collider (LHC)

– Electroweak studies with W & Z bosons, Higgs boson measurements, searches for new phenomena...

o Detector & trigger upgrades for High Luminosity LHC create new unique opportunities for improved trigger performance

– Use neural network regression to measure more precisely muon transverse momentum (pT )

– FPGA-based hardware machine learning algorithms can be used for new exotic trigger signatures
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Potential new signatures for long-lived particle (LLP) searches:
LLP decays, highly ionising LLPs, slow-moving LLPs
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ATLAS muon spectrometer (MS)

o 2 fast detectors for L1 trigger with muon position resolution of ∼ 1 cm:

– Fast measurements of muon pT within the 2.1 µs latency of the L1 trigger

– Muons add ∼ 10% of 100 kHz of the Level-1 ATLAS trigger rate → dominated by muons with mismeasured pT

– Resistive plate chambers (RPCs) in the barrel region (|η| < 1.05) - subject of this talk

o 2 precision detectors for high-level trigger (HLT) and offline muon reconstruction:

– 1 barrel and 2 endcap air-core toroid magnets with muon pT resolution ∆pT/pT ≈ 4%
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ATLAS RPC detector

o 3 concentric cylindrical shells of double-layer (doublet) chambers located at radii of 7, 8 and 10 meters

o ∼ 3700 gas volumes with the surface area of ∼ 4000 m2 with ∼ 360k readout strips

o Provide 6 measurements in bending (r , z) plane and 6 measurements in non-bending (x , y) plane

o ATLAS RPC performance paper using 2018 data: JINST 16 (2021) P07029

RPC cluster hit multiplicity in response to muons
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Neural network regression model for RPC muon trigger
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Neural network regression model

1. Our first goal is to measure muon q/pT in order to improve |pT | resolution of the RPC trigger

– Idea is to include muon charge q → narrower trigger road → better pT resolution and smaller background

– Essentially, we use the neural network regression model to fit q/pT

2. Design requirements

– Aim for fast enough network with small FPGA resource usage << resources of proposed XCVU13P FPGA

– Aim for neural network latency << 10 µs latency of the future L0 trigger system

– If these goals can be achieved, neural networks can be also used for new exotic triggers - long lived particles, etc

3. Advantages of using neural networks for hardware trigger

– Machine learning algorithms allow to reach higher signal efficiency and smaller background acceptance

– Same circuit can be used for different detector elements → differences encoded via training weights

– Same circuit can be used for different triggers, for example to trigger on long lived particles

o Collaboration with Prof. Changqing Feng, and Wenhao Dong, Wenhao Feng, Kai Zhang, Shining Yang

– Presenting today our just published results: EPJC 82, 576 (2022)
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RPC toy simulation model

o RPC detector toy model for first studies:

– Model existing RPC to allow comparisons
with current ATLAS RPC performance

– Uniform 0.5 T toroidal B-field

– 6 RPC layers with perfect acceptance

– Parallel 3 cm wide strips

– Only bending (η) detector view

– 95% efficiency to produce muon hit

– 25% prob. to produce 2-strip muon cluster

– 0.1% prob. per strip to make noise hit

– No detector material (multiple scattering is

small because of the air-core toroids)

o Muon simulation parameters:

– Flat muon pT : 3 to 30 GeV

– Flat muon angle: 50 to 85 degrees to z-axis

– Python code in GitHub:
https://github.com/rustemos/MuonTriggerPhase2RPC
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Candidate muon reconstruction

1. In each single layer, reconstruct nearby
contiguous hits as one cluster

2. In each doublet layer, merge overlapping
single-layer clusters into one super-cluster

3. In RPC2 doublet layer, draw a straight line

through each RPC2 super-cluster (seed line)

3.1 In RPC1 and RPC3 doublet layers, select
super-cluster closest to this line

3.2 If the selected super-clusters are within ±20

strips to seed line, make a muon candidate

o With a window of ±20 strips to make candidates,

muons with pT < 3 GeV bend outside this window

o 2 candidates when a noise hit is reconstructed as a

muon cluster

4.0 4.5 5.0 5.5 6.0
Beam axis z [m]

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Ra
di

al
 y

 [m
]

RPC1 doublet

RPC2 doublet

RPC3 doublet

RPC toy simulation

Sim. muon q pT = -4.4 GeV
RPC2 seed cluster line
Primary muon hit
Muon cluster hit
Noise hit

Development of resource-efficient FPGA-based neural network Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang 8



Neural network inputs

o 3 inputs for the neural network (NN) training:

1. RPC2 seed cluster z position (provides muon angular direction information to NN)

2. RPC1 cluster ∆z with respect to seed line - require |∆z| < 0.15 m

3. RPC3 cluster ∆z with respect to seed line - require |∆z| < 0.6 m

– Using differences improved NN training convergence and performance

RPC1 differences between zcluster and seed line
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Neural network regression model: design

o Scan several network architectures

→ Select 3 hidden layers with 20 nodes each & ReLU activation

o Network size is driven by RPC resolution with 3 cm wide strips

→ Little benefit from larger networks

o Linear loss function to improve training convergence

→ Mean of |differences| between simulated and predicted q/pT

o Network training with PyTorch:

– 100k events without noise to improve convergence & performance

Loss function vs. training epoch
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Neural network performance

o Excellent performance for predicting q/pT for pure muons

– Noise µ shown in orange

– Evaluated with statistically independent events

– Contributions from noise muons are small

– Also developed quality criteria to suppress noise muons

Predicted vs. true q/pT
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Neural network performance: trigger efficiency
o Compute efficiency for selecting muon candidates with pT > 20 GeV:

– Compare to MU20 trigger efficiency in data as shown earlier

– Toy simulation has perfect acceptance → scale efficiency curve to match the data plateau

o Obtained much steeper efficiency curve than data - potentially leading to lower muon trigger rates

– Missing many effects present in the real RPC detector → still looks interesting enough to study further...

Relative pT error vs. true q/pT
Achieved about 10% pT resolution at 10 GeV
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Efficiency to trigger muon with pT > 20 GeV

Scale efficiency curve to match the data plateau
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FPGA implementation and simulation
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FPGA implementation

o Implemented full neural network regression model in Vivado hardware description language (HDL)

– 3 serial data pipelines between layers sending data simultaneously to 20 neurons of next layer

– Neuron node is implemented using 3 processing units (PEs), each receiving & processing data in parallel
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FPGA implementation: hidden layer design
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o Resource usage and simulated latency @320 MHz for Xilinx FPGA XCKU060 for 3 FPGA implementations

– Optimised HDL design available at hdl4nn and simplified (baseline) HDL design using one PE per neuron

– High Level Synthesis (HSL) design with hls4ml - ”reuse” sets number of multiplications by each DSP

– A factor of 4 smaller resource usage for our HDL design with similar latency as HLS implementation

– 122 ns latency and 25 ns deadtime for our optimised HDL design using 157 DSPs and about 5,000 LUTs
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Choosing fixed point arithmetic precision and neural network configuration

o HDL FPGA implementation uses 16-bit binary fixed-point numbers

– Scan several options for fractional part precision

– Compute relative pT error between full precision and fixed-point precision - plotted below

– Chosen 10 bits for the fractional part and 6 for the signed integer part

o Also scanned several neural network configurations

– Selected 20-20-20 configuration as providing best muon momentum resolution
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FPGA simulation

o Full neural network circuit has been tested using simulation:

– Simulation test project was developed using Questa Advanced Simulator and SystemVerilog

o Compare results from PyTorch and FPGA simulation for the same events:

– Percent level errors from using the fixed-point 16-bit arithmetic

– Efficiency curve for the FPGA implementation is nearly identical to that obtained with PyTorch
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Summary and outlook

✓ Effective trigger selection of muon candidates is crucial for the LHC physics programme

✓ Extensive muon spectrometer & trigger upgrades are planned for the HL-LHC

– New FPGA-based muon trigger electronics will allow more sophisticated ATLAS trigger algorithms

✓ We developed resource-efficient FPGA-based neural network regression model - EPJC 82, 576 (2022)

– Neural network is trained to measure muon q/pT using data from the toy RPC simulation

– This model promises better performance than the current L1 system → steeper muon efficiency curve

– Important caveat: toy simulation does not include many effects present in the real RPC detector

✓ This neural network was implemented in HDL code (hdl4nn) with 122 ns latency and 25 ns deadtime

– A factor of 4 smaller resource usage and similar latency compared to the implementation obtained with hls4ml

✓ Results look promising and warrant further studies with ATLAS data and simulation

– Also aim to develop dedicated L0 triggers to search for long-lived particles using the ATLAS muon spectrometer

Thank you for your attention!
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BACKUP

Development of resource-efficient FPGA-based neural network Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang 20



ATLAS Resistive Plate Chambers

o Parallel resistive plates (bakelite with 2 × 1010 Ω · cm) are separated by 2 mm with insulating spacers

o Induced signal is read out using orthogonal η and ϕ copper strips with 23-35 mm pitch

o ∼ 1 ns total time resolution → excellent separation of proton bunches that are 25 ns apart

o 320 MHz clock for detecting raising edge of the amplified avalanche signal → 3.125 ns wide time bins

o RPC operate in avalanche mode with average applied voltage of 9.6 kV → working at the efficiency plateau

o Non-flammable low-cost gas: tetrafluorethane C2H2F4(94.7%), iso-butane C4H10(5%), sulphur hexafluoride SF6(0.3%)

o This mixture is a potent greenhouse gas → currently being phased out in EU due to environmental impact → raising costs
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Search for slow-moving stable charged particles

o Time-of-flight and dE/dx energy loss are used to search for heavy stable charged particles

– RPC is the most sensitive detector for measuring muon time-of-flight

o Search for production of supersymmetric particles (stau, chargino, gluino, R-hadron)

– Sensitive to other models producing heavy stable charged particles

RPC has most precise βµ resolution of ∼ 2%
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RPC trigger efficiency is reduced by ≈ 20% by detector support structures
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RPC trigger efficiency is reduced by another ≈ 10% by inefficient modules (left plots)
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L1 muon barrel trigger: (in)efficiency and rates

o RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger

– Will install three new RPC layers in the inner barrel region for HL-LHC operations to increase acceptance

o RPC muon trigger rates are dominated by low-pT muons with mismeasured momentum

– New Small Wheel detectors will reduce the endcap muon trigger rate by a factor of ∼ 3

– Barrel RPC muon trigger rates would then contribute a significant fraction of L1 events

– Our study aims to improve pT resolution of the future RPC trigger by using a neural network regression

MU20 trigger efficiency in (ϕ, z) plane
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ATLAS RPC detector

o 3 concentric cylindrical shells of double-layer (doublet) chambers located at radii of 7, 8 and 10 meters

o ∼ 3700 gas volumes with the surface area of ∼ 4000 m2 with ∼ 360k readout strips

o Provide 6 measurements in bending (r , z) plane and 6 measurements in non-bending (x , y) plane

o ATLAS RPC performance paper using 2018 data: JINST 16 (2021) P07029

Non-bending (x , y) plane - RPC ϕ strips
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RPC detector response

o Measure RPC detector response with offline probe muons produced in pp collisions

– Use Z boson decays to 2 muons - one muon is tag and another is probe

– Propagate probe muons in magnetic field to predict an impact point on the RPC surfaces

– Offline probe muon candidates are reconstructed using primarily the MDT detector

o Detect hits associated with muon induced avalanche → hit time and multiplicity

– Hit is a signal induced in one strip above a tunable threshold of the front-end electronics

Calibrated hit time for one RPC module
Zero corresponds to time of pp collisions
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RPC detector efficiency

o Muon detection efficiency = probability to detect muon induced avalanche producing ≥ 1 hit

– Measured using events containing a muon predicted to pass through a given chamber

– Gas gap efficiency = probability to detect avalanche using either η or ϕ strips

o Average RPC detector efficiency to detect a muon is ∼ 94%

– Excellent detector stability during data taking in 2018

– About 10% of RPCs were off in 2018 due to gas leaks - these chambers are not shown below
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RPC detector time resolution

o Measure time resolution using time differences of muon signals recorded by two parallel RPC layers

– Two layers are separated by ∼ 20 mm → negligible muon time-of-flight

– Subtract time resolution component of the front-end electronics which is measured in-situ

o Average measured RPC time resolution: σRPC/
√
2 ∼ 1 ns

– Small differences between η and ϕ time resolution is due to differences in construction
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ATLAS L1 muon barrel trigger
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Level 1 muon barrel trigger

o L1 muon barrel trigger uses RPCs to detect muon
trigger candidates at 40 MHz rate

– Custom-built on-detector electronics making
decision within 2.1 µs after each beam crossing

– 3328 detector regions with ∆η × ∆ϕ ≈ 0.1 × 0.1

o 3 low pT thresholds:

– 3/4 coincidence within trigger road in the two inner

doublet layers (RPC1 and RPC2)

o 3 high pT thresholds:

– Require highest low-pT trigger plus 1-out-of-2

coincidence in the outer doublet layer (RPC3)
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L1 muon barrel trigger: coincidence matrix

o Coincidence matrix ASIC (CMA)

– Application-specific integrated circuit (ASIC) to check coincidence of hits between two RPC layers within a cone

– 6 programmable roads (with different cone sizes) correspond to 6 trigger thresholds for muon pT

High-pT MU20 road for bending η coordinate

Road width is determined by muon curvature in magnetic field
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Level 1 muon barrel trigger: efficiency

o MU20 is the primary L1 muon trigger threshold for selecting muons with pT > 20 GeV for physics data taking

– Highly efficient for detecting muons produces in decays of W and Z bosons

– RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger

– Steepness of the efficiency curve determines trigger rates → dominated by muons with mismeasured pT

o Steepness of the efficiency curve determines trigger rates

– Accepted MU20 events are dominated by low-pT muons produced in bb̄ + cc̄ events

L1 barrel muon trigger efficiency ϵtrigger vs. pT
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Muon spectrometer upgrades for High Luminosity LHC
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Muon spectrometer upgrades for High Luminosity LHC

o Current RPC:

– 6 layers with η × ϕ grid of 3 cm wide strips

– Custom ASICs for muon trigger electronics

– Total L1 bandwidth is 100 kHz

– L1 latency to process an event: 2.1 µs

o After HL-LHC upgrades in 2025∼2026:

– Higher background → higher trigger rates

– 3 new inner RPC layers with better time resolution
→ Thin-gap RPCs in inner barrel (BI)

– L1→L0: 1 MHz bandwidth & 10 µs latency

– New FPGA-based electronics for L0 muon trigger

– MS Phase-2 Upgrade Technical Design Report

– TDAQ Phase-2 Upgrade Technical Design Report
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FPGAs in future ATLAS trigger system

o Field-programmable gate array device (FPGA)

– Integrated circuit configurable after manufacturing

– Programmable logic blocks and interconnects:

lookup tables (LUTs), digital signal processors
(DSPs), random-access memory (RAM), etc

– Use software to programme computing hardware

o L0 muon trigger:

– Input: ∼ 0.1 MB at 40 MHz ≈ 4 TB/s

– Fixed L0 muon latency ∼ 4 µs → too fast for CPUs

– Use FPGAs for hardware trigger algorithms

o High-level software-based trigger system (HLT) :

– Input: ∼ 2 MB at 1 MHz

– Partial event reconstruction in regions of interest

– R&D to use FPGAs to accelerate HLT algorithms

Development of resource-efficient FPGA-based neural network Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang 36



Potential applications for FPGA-based neural networks

o HL-LHC searches for long lived particles (LLPs)

– L1 trigger was designed for detecting SM particles

– FPGAs allow development of new dedicated exotic triggers

– Neural networks can be used to trigger on exotic signatures:

LLP decays, highly ionising LLPs, slow-moving LLPs
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