Development of resource-efficient FPGA-based neural network regression model for the ATLAS muon trigger upgrades

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang

International Conference on High Energy Physics 2022 - Bologna, Italy

July 8th, 2022

Motivation

- o Muons are important signature for the physics programme at the Large Hadron Collider (LHC)
 - Electroweak studies with W & Z bosons, Higgs boson measurements, searches for new phenomena...
- o Detector & trigger upgrades for High Luminosity LHC create new unique opportunities for improved trigger performance
 - Use neural network regression to measure more precisely muon transverse momentum (p_T)
 - FPGA-based hardware machine learning algorithms can be used for new exotic trigger signatures

Potential new signatures for long-lived particle (LLP) searches: LLP decays, highly ionising LLPs, slow-moving LLPs

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang

ATLAS muon spectrometer (MS)

o 2 fast detectors for L1 trigger with muon position resolution of \sim 1 cm:

- Fast measurements of muon p_T within the 2.1 μs latency of the L1 trigger
- Muons add \sim 10% of 100 kHz of the Level-1 ATLAS trigger rate \rightarrow dominated by muons with mismeasured p_{T}
- Resistive plate chambers (RPCs) in the barrel region ($|\eta| < 1.05$) subject of this talk
- o 2 precision detectors for high-level trigger (HLT) and offline muon reconstruction:

Development of resource-efficient FPGA-based neural network

3

ATLAS RPC detector

- o 3 concentric cylindrical shells of double-layer (doublet) chambers located at radii of 7, 8 and 10 meters
- o $\,\sim$ 3700 gas volumes with the surface area of \sim 4000 m^2 with \sim 360k readout strips
- Provide 6 measurements in bending (r, z) plane and 6 measurements in non-bending (x, y) plane
- o ATLAS RPC performance paper using 2018 data: JINST 16 (2021) P07029

Neural network regression model for RPC muon trigger

Neural network regression model

1. Our first goal is to measure muon q/p_T in order to improve $|p_T|$ resolution of the RPC trigger

- Idea is to include muon charge $q \rightarrow$ narrower trigger road \rightarrow better p_T resolution and smaller background
- Essentially, we use the neural network regression model to fit q/p_T

2. Design requirements

- Aim for fast enough network with small FPGA resource usage << resources of proposed XCVU13P FPGA
- Aim for neural network latency << 10 μ s latency of the future L0 trigger system
- If these goals can be achieved, neural networks can be also used for new exotic triggers long lived particles, etc

3. Advantages of using neural networks for hardware trigger

- Machine learning algorithms allow to reach higher signal efficiency and smaller background acceptance
- Same circuit can be used for different detector elements \rightarrow differences encoded via training weights
- Same circuit can be used for different triggers, for example to trigger on long lived particles
- o Collaboration with Prof. Changqing Feng, and Wenhao Dong, Wenhao Feng, Kai Zhang, Shining Yang
 - Presenting today our just published results: EPJC 82, 576 (2022)

Development of resource-efficient FPGA-based neural network

6

RPC toy simulation model

o RPC detector toy model for first studies:

- Model existing RPC to allow comparisons with current ATLAS RPC performance
- Uniform 0.5 T toroidal B-field
- 6 RPC layers with perfect acceptance
- Parallel 3 cm wide strips
- Only bending (η) detector view
- 95% efficiency to produce muon hit
- 25% prob. to produce 2-strip muon cluster
- 0.1% prob. per strip to make noise hit
- No detector material (multiple scattering is small because of the air-core toroids)

o Muon simulation parameters:

- Flat muon pT: 3 to 30 GeV
- Flat muon angle: 50 to 85 degrees to z-axis
- Python code in GitHub: https://github.com/rustemos/MuonTriggerPhase2RPC

Development of resource-efficient FPGA-based neural network

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang

Candidate muon reconstruction

- 1. In each single layer, reconstruct nearby contiguous hits as one cluster
- 2. In each doublet layer, merge overlapping single-layer clusters into one super-cluster
- 3. In RPC2 doublet layer, draw a straight line through each RPC2 super-cluster (seed line)
 - 3.1 In RPC1 and RPC3 doublet layers, select super-cluster closest to this line
 - 3.2 If the selected super-clusters are within ± 20 strips to seed line, make a muon candidate
- o With a window of ± 20 strips to make candidates, muons with $p_T < 3$ GeV bend outside this window
- 2 candidates when a noise hit is reconstructed as a muon cluster

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang 8

Neural network inputs

o 3 inputs for the neural network (NN) training:

- 1. RPC2 seed cluster z position (provides muon angular direction information to NN)
- 2. RPC1 cluster Δz with respect to seed line require $|\Delta z| < 0.15$ m
- 3. RPC3 cluster Δz with respect to seed line require $|\Delta z| < 0.6$ m
- Using differences improved NN training convergence and performance

RPC3 deflections from the seed line vs. muon qp_T

Neural network regression model: design

o Scan several network architectures

- ightarrow Select 3 hidden layers with 20 nodes each & ReLU activation
- o Network size is driven by RPC resolution with 3 cm wide strips
 - \rightarrow Little benefit from larger networks
- o Linear loss function to improve training convergence
 - $\rightarrow~$ Mean of |differences| between simulated and predicted q/p_T
- o Network training with PyTorch:
 - 100k events without noise to improve convergence & performance

Development of resource-efficient FPGA-based neural network

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang

Neural network performance

Predicted vs. true q/p_T

- o Excellent performance for predicting q/p_T for pure muons
 - Noise μ shown in orange
 - Evaluated with statistically independent events
 - Contributions from noise muons are small
 - Also developed quality criteria to suppress noise muons

Neural network performance: trigger efficiency

- $_{\odot}$ Compute efficiency for selecting muon candidates with $p_{T}>20$ GeV:
 - Compare to MU20 trigger efficiency in data as shown earlier
 - Toy simulation has perfect acceptance ightarrow scale efficiency curve to match the data plateau
- o Obtained much steeper efficiency curve than data potentially leading to lower muon trigger rates
 - Missing many effects present in the real RPC detector \rightarrow still looks interesting enough to study further...

12

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang

FPGA implementation and simulation

FPGA implementation

- o Implemented full neural network regression model in Vivado hardware description language (HDL)
 - 3 serial data pipelines between layers sending data simultaneously to 20 neurons of next layer
 - Neuron node is implemented using 3 processing units (PEs), each receiving & processing data in parallel

FPGA implementation: hidden layer design

Neuron node output = ReLU($\sum_{i=1}^{20} x_i \cdot \text{weight}_i + \text{bias}$)

- o Resource usage and simulated latency @320 MHz for Xilinx FPGA XCKU060 for 3 FPGA implementations
 - Optimised HDL design available at hdl4nn and simplified (baseline) HDL design using one PE per neuron
 - High Level Synthesis (HSL) design with <u>hls4ml</u> "reuse" sets number of multiplications by each DSP
 - A factor of 4 smaller resource usage for our HDL design with similar latency as HLS implementation
 - 122 ns latency and 25 ns deadtime for our optimised HDL design using 157 DSPs and about 5,000 LUTs

	Deadtime (cycles)	Latency (cycles)	DSPs	LUTs	Registers
Optimised HDL design	8	39	157 (5.7%)	4659 (1.4%)	7370 (1.1%)
HLS (reuse = 1)	2	23	677 (24.5%)	30952 (9.2%)	15507 (2.3%)
HLS (reuse $= 2$)	6	94	430 (15.6%)	38701 (11.5%)	8916 (1.4%)
HLS (reuse = 4)	8	100	225 (8.2%)	35972 (10.7%)	6301 (1.0%)
Simplified HDL design	24	98	65 (2.4%)	9949 (3.0%)	10257 (1.6%)

Development of resource-efficient FPGA-based neural network

16

Choosing fixed point arithmetic precision and neural network configuration

- o HDL FPGA implementation uses 16-bit binary fixed-point numbers
 - Scan several options for fractional part precision
 - Compute relative p_T error between full precision and fixed-point precision plotted below
 - Chosen 10 bits for the fractional part and 6 for the signed integer part
- o Also scanned several neural network configurations
 - Selected 20-20-20 configuration as providing best muon momentum resolution

FPGA simulation

- o Full neural network circuit has been tested using simulation:
 - Simulation test project was developed using Questa Advanced Simulator and SystemVerilog
- o Compare results from PyTorch and FPGA simulation for the same events:
 - Percent level errors from using the fixed-point 16-bit arithmetic
 - Efficiency curve for the FPGA implementation is nearly identical to that obtained with PyTorch

Summary and outlook

- \checkmark Effective trigger selection of muon candidates is crucial for the LHC physics programme
- \checkmark Extensive muon spectrometer & trigger upgrades are planned for the HL-LHC
 - New FPGA-based muon trigger electronics will allow more sophisticated ATLAS trigger algorithms
- √ We developed resource-efficient FPGA-based neural network regression model EPJC 82, 576 (2022)
 - Neural network is trained to measure muon q/p_T using data from the toy RPC simulation
 - This model promises better performance than the current L1 system ightarrow steeper muon efficiency curve
 - Important caveat: toy simulation does not include many effects present in the real RPC detector
- \checkmark This neural network was implemented in HDL code (hdl4nn) with 122 ns latency and 25 ns deadtime
 - A factor of 4 smaller resource usage and similar latency compared to the implementation obtained with hls4ml
- \checkmark Results look promising and warrant further studies with ATLAS data and simulation
 - Also aim to develop dedicated L0 triggers to search for long-lived particles using the ATLAS muon spectrometer

Thank you for your attention!

BACKUP

ATLAS Resistive Plate Chambers

- o Parallel resistive plates (bakelite with 2 imes 10¹⁰ $\Omega \cdot cm$) are separated by 2 mm with insulating spacers
- o Induced signal is read out using orthogonal η and ϕ copper strips with 23-35 mm pitch
- o $\,\sim\,$ 1 ns total time resolution ightarrow excellent separation of proton bunches that are 25 ns apart
- o 320 MHz clock for detecting raising edge of the amplified avalanche signal ightarrow 3.125 ns wide time bins
- o RPC operate in avalanche mode with average applied voltage of 9.6 kV \rightarrow working at the efficiency plateau

 \circ Non-flammable low-cost gas: tetrafluorethane $C_2H_2F_4(94.7\%)$, iso-butane $C_4H_{10}(5\%)$, sulphur hexafluoride $SF_6(0.3\%)$

o This mixture is a potent greenhouse gas \rightarrow currently being phased out in EU due to environmental impact \rightarrow raising costs

Search for slow-moving stable charged particles

- o Time-of-flight and dE/dx energy loss are used to search for heavy stable charged particles
 - RPC is the most sensitive detector for measuring muon time-of-flight
- o Search for production of supersymmetric particles (stau, chargino, gluino, R-hadron)
 - Sensitive to other models producing heavy stable charged particles

Development of resource-efficient FPGA-based neural network

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang, Shining Yang

RPC trigger efficiency is reduced by $\approx 20\%$ by detector support structures

RPC trigger efficiency is reduced by another $\approx 10\%$ by inefficient modules (left plots)

Development of resource-efficient EPGA-based neural network

Rustem Ospanov, Changqing Feng, Wenhao Dong, Wenhao Feng, Kan Zhang. Shining Yang 24

L1 muon barrel trigger: (in)efficiency and rates

- o RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger
 - Will install three new RPC layers in the inner barrel region for HL-LHC operations to increase acceptance
- o RPC muon trigger rates are dominated by low- p_T muons with mismeasured momentum
 - New Small Wheel detectors will reduce the endcap muon trigger rate by a factor of ~ 3
 - Barrel RPC muon trigger rates would then contribute a significant fraction of L1 events
 - Our study aims to improve p_T resolution of the future RPC trigger by using a neural network regression

25

ATLAS RPC detector

- 3 concentric cylindrical shells of double-layer (doublet) chambers located at radii of 7, 8 and 10 meters 0
- o \sim 3700 gas volumes with the surface area of \sim 4000 m^2 with \sim 360k readout strips
- Provide 6 measurements in bending (r, z) plane and 6 measurements in non-bending (x, y) plane
- o ATLAS RPC performance paper using 2018 data: JINST 16 (2021) P07029

RPC detector response

- o Measure RPC detector response with offline probe muons produced in pp collisions
 - Use Z boson decays to 2 muons one muon is tag and another is probe
 - Propagate probe muons in magnetic field to predict an impact point on the RPC surfaces
 - Offline probe muon candidates are reconstructed using primarily the MDT detector
- o Detect hits associated with muon induced avalanche \rightarrow hit time and multiplicity
 - Hit is a signal induced in one strip above a tunable threshold of the front-end electronics

Calibrated hit time for one RPC module Zero corresponds to time of pp collisions Hit multiplicity in response to muon passage for one RPC module Efficiency is a fraction of events with at least one detected hit

RPC detector efficiency

- o Muon detection efficiency = probability to detect muon induced avalanche producing \geq 1 hit
 - Measured using events containing a muon predicted to pass through a given chamber
 - Gas gap efficiency = probability to detect avalanche using either η or ϕ strips
- o Average RPC detector efficiency to detect a muon is $\sim 94\%$
 - Excellent detector stability during data taking in 2018
 - About 10% of RPCs were off in 2018 due to gas leaks these chambers are not shown below

RPC detector time resolution

- o Measure time resolution using time differences of muon signals recorded by two parallel RPC layers
 - Two layers are separated by \sim 20 mm \rightarrow negligible muon time-of-flight
 - Subtract time resolution component of the front-end electronics which is measured in-situ
- o Average measured RPC time resolution: $\sigma_{RPC}/\sqrt{2} \sim 1$ ns

 $t_{\text{laver 0}} - t_{\text{laver 1}}$

- Small differences between n and ϕ time resolution is due to differences in construction

Development of resource-efficient EPGA-based neural network

 σ_{RPC}

ATLAS L1 muon barrel trigger

Level 1 muon barrel trigger

o L1 muon barrel trigger uses RPCs to detect muon trigger candidates at 40 MHz rate

- Custom-built on-detector electronics making decision within 2.1 μs after each beam crossing
- 3328 detector regions with $\Delta\eta imes\Delta\phipprox 0.1 imes 0.1$

o 3 low p_T thresholds:

 - 3/4 coincidence within trigger road in the two inner doublet layers (RPC1 and RPC2)

o 3 high p_T thresholds:

 Require highest low-p_T trigger plus 1-out-of-2 coincidence in the outer doublet layer (RPC3)

L1 muon barrel trigger: coincidence matrix

o Coincidence matrix ASIC (CMA)

- Application-specific integrated circuit (ASIC) to check coincidence of hits between two RPC layers within a cone
- 6 programmable roads (with different cone sizes) correspond to 6 trigger thresholds for muon p_T

Level 1 muon barrel trigger: efficiency

o MU20 is the primary L1 muon trigger threshold for selecting muons with $p_T > 20$ GeV for physics data taking

- Highly efficient for detecting muons produces in decays of W and Z bosons
- RPC acceptance holes and detector inefficiency lead to the efficiency plateau at 70% for MU20 trigger
- Steepness of the efficiency curve determines trigger rates \rightarrow dominated by muons with mismeasured p_T
- o Steepness of the efficiency curve determines trigger rates
 - Accepted MU20 events are dominated by low- p_T muons produced in $b\bar{b} + c\bar{c}$ events

Muon spectrometer upgrades for High Luminosity LHC

Muon spectrometer upgrades for High Luminosity LHC

o Current RPC:

- 6 layers with $\eta imes \phi$ grid of 3 cm wide strips
- Custom ASICs for muon trigger electronics
- Total L1 bandwidth is 100 kHz
- L1 latency to process an event: 2.1 μs

o After HL-LHC upgrades in 2025~2026:

- Higher background \rightarrow higher trigger rates
- 3 new inner RPC layers with better time resolution \rightarrow Thin-gap RPCs in inner barrel (BI)
- L1 \rightarrow L0: 1 MHz bandwidth & 10 μ s latency
- New FPGA-based electronics for L0 muon trigger
- MS Phase-2 Upgrade Technical Design Report
- TDAQ Phase-2 Upgrade Technical Design Report

FPGAs in future ATLAS trigger system

o Field-programmable gate array device (FPGA)

- Integrated circuit configurable after manufacturing
- Programmable logic blocks and interconnects: lookup tables (LUTs), digital signal processors (DSPs), random-access memory (RAM), etc
- Use software to programme computing hardware

o L0 muon trigger:

- Input: \sim 0.1 MB at 40 MHz \approx 4 TB/s
- Fixed L0 muon latency \sim 4 $\mu \text{s} \rightarrow$ too fast for CPUs
- Use FPGAs for hardware trigger algorithms
- o High-level software-based trigger system (HLT) :
 - Input: \sim 2 MB at 1 MHz
 - Partial event reconstruction in regions of interest
 - R&D to use FPGAs to accelerate HLT algorithms

36

Potential applications for FPGA-based neural networks

o HL-LHC searches for long lived particles (LLPs)

- L1 trigger was designed for detecting SM particles
- FPGAs allow development of new dedicated exotic triggers
- Neural networks can be used to trigger on exotic signatures: LLP decays, highly ionising LLPs, slow-moving LLPs

