

Istituto Nazionale di Fisica Nucleare Sezione di Trieste

Characterisation of the transient response of diamond sensors to collimated, sub-picosecond, 1 GeV electron bunches

Silvano Bassanese¹, Luciano Bosisio², Giuseppe Cautero^{1,2}, Simone Di Mitri^{1,3}, Mario Ferianis¹, Alice Gabrielli^{2,3}, Dario Giuressi^{1,2}, <u>Yifan Jin²</u>, Livio Lanceri², Marco Marich¹, Ralf Hendrik Menk^{1,2,4}, Lorenzo Vitale^{2,3}

1 Elettra Sincrotrone Trieste SCpA, 2 INFN-Sezione di Trieste, 3 Università di Trieste, 4 University of Saskatchewan

Yifan.Jin@ts.infn.it

Diamond sensors

experiments.

- wide bandgap \rightarrow excellent radiation hardness.
- Often serve as solid-state ionisation chamber for radiation dosimetry. (In some applications, also as tracker.)

• Synthetic chemical-vapor deposition (CVD) diamond sensors are widely used in HEP

• As a semiconductor material, it has high charge carrier mobility \rightarrow fast signal;

Radiation monitor @ **Belle II**

• We have developed and installed a diamond-based radiation $\frac{1}{2}$ monitor on Belle II detector at SuperKEKB e^+e^- collider.

 $(4.5 \times 4.5 \times 0.5) mm^3$ sCVD crystals

NIM-A, 1004, (2021), 165383.

hitting dust.

tolerable at this e^+e^- collider.

• With the increase of SuperKEKB instantaneous luminosity (new world record $4.7 \times 10^{-35} \ cm^{-2}s^{-1}$), the beam background is more severe. Bunch charge 4 nC. <u>Radiation bursts</u> occur due to the beam

• This urges an investigation of the response of diamond sensors to ultra-fast and intense electron pulses (tens of pC). On the other hand, the beam background due to neutrons and pions is still

Crystal assessment

NIM-A, 1004, (2021), 165383.

• Transient current technique (TCT) with α particle source has been used to measure the mobility and drift velocity of charge carriers, and the energy to create an e-h pair in diamond ($E_{eh} \approx 13 eV$).

• Using β - and X- ray, the stability of diamond sensor's response to steady irradiation has been investigated; calibration factor, from current I to dose rate D, measured over a wide range. A silicon diode is used as reference to reduce uncertainty of radiation source.

Exp. set-up @FERMI Linear Accelerator, Elettra

can move vertically

- ~ 1 GeV energy electron bunches,
- Variable charge from 20 to 500 pC,
- ~0.1 mm transverse size,
- Duration <1 ps, rate 50 Hz.
 ← Experimental layout
 ← Diamond sensors

-Fluorescent screen → beam profile Beam current transformer → bunch charge

Fluorescent screen: beam profile

Data taking

- V_{bias} on the electrode: 50 V, 100 V, 150 V.
- For small bunch charge, thorough beam tuning and optics simulation are needed.
- After achieving satisfactory beam condition, beam scan on the diamond is carried out.
- Data sets: 35 pC, 50 pC.

Response to electron bunches

- total signal charge : 9.4×10^{-7} C.
- Experimental data (voltage on the electrode measured by oscilloscope):

- 2.7×10^{-8} C, 3.0×10^{-8} C, and 2.4×10^{-8} C. Non-linearity is manifest.
- 1, NIST Standard Reference Database 124

• Assuming collision energy loss for incoming electrons $\Delta E = 0.35$ MeV [1], a 35pC electron bunch traversing 0.5 mm thickness generates 5.9×10^{12} e-h pairs \rightarrow expected

• Integrated current (voltage/50 Ω termination), a measure of collected charge, gives :

Simulation workflow

- A two-step simulation (TCAD+LTspice) was established prior to data-taking.
- The diamond detector \rightarrow voltage source? current source?
- Using TCAD-Sentaurus [1]: a beam interacting with the diamond crystal, the creation of electron-hole pairs, the drift of charge carriers, and the evolution of the induced voltage drop on electrodes. In addition, evolution of the concentration of charge carriers inside the diamond crystal.
- The simulated voltage drop on the electrode is input to LTspice [2]. Coaxial cables, power supply, and oscilloscope all are modelled to take into account the transmission effects on the electrical signal such as reflection, attenuation, distortion, etc.
 - 1, https://www.synopsys.com/silicon/tcad.html
 - 2, https://www.analog.com/en/design-center/designtools-and-calculators/ltspice-simulator.html

Validation of simulation approach

- The deposit energy of α particles in the diamond bulk is simulated using FLUKA. The obtained distribution is input to TCAD.
- The measured values of charge carrier mobility and saturation velocity are input to TCAD. The lifetime of charge carriers (2 μs) is taken from Element Six handbook.
- Contact between diamond and Ti-Pt-Al electrodes is set "ohmic".
- The diamond sensor is modelled as a current source here.
- observed.

• Using TCT measurement, the simulation is validated.

• Good agreement between simulation and experimental data is

Outcome of TCAD

- cancel off the external E field, slowing down the charge collection.
- order smaller[2].

• A distinct "<u>knee</u>" feature exists in the voltage evolution. Due to the large concentration of excess charge carriers, diamond is a "conductor" for a short time. As carriers start to drift, an internal E field is established by the space charge, which

• The concentration of charge carriers near the injection path is up to $10^{17} cm^{-3}!$ Thus the previous value of lifetime no longer makes sense, ie, additional recombination occurs[1]. Temperature increase also reduces lifetime. Realistic lifetime could be one

Modelling of diamond sensor in circuit

resistance (R) obtained from TCAD.

• A variable effective resistor (R3) is introduced to account for the variable impedance and additional recombination of charge carriers. It has a 10 times higher slope w.r.t the

11

Outcome of LTspice

- The amplitude (about half of V_{bias}) is determined by the circuit impedance.
- The time gap between reflections is also well-reproduced.

Summary & outlook

- Underlying mechanism has been investigated:
- The signal amplitude is determined by circuit impedance.

- The long tail is due to the screening effect of space charge, which delays the collection of charge carriers at the electrodes.

- The tail slope is mainly determined by the presence of substantial recombination of charge carriers (with lifetime much shorter due to their high initial concentration).

- detector's response to similar conditions.
- More datasets are planned (aiming at lower charge).

• Non-linearity does exist in diamond's response to ultra-fast and intense e pulses.

• We have collected data at 35 pC and 50 pC, can use our model to extrapolate the

Thank you!

Backup

Mass collision stopping power of diamond 2 $MeV \cdot cm^{-2} \cdot g^{-1}$ Diamond density 3.5 g/cm^3 Deposit energy 2 $MeV \cdot cm^{-2} \cdot g^{-1} \ge 3.5 g/cm^3 \ge 0.05$ cm = 0.35 MeV $N_{eh} = \frac{DepositEnergy}{E_{eh}} \cdot N_{e-in-a-bunch} \cdot q = 5.9 \ge 10^{12} (9.4 \ge 10^{-7} \text{ C})$

$$\frac{1}{e^{V+qN_{eh}\mu_h/V}} \cdot \frac{d}{s} = \frac{1}{qN_{eh}\mu_e + qN_{eh}\mu_h} \cdot d^2$$

For 50 V bias, $\mu_e + \mu_h = 3000$ For 100 V bias, $\mu_e + \mu_h = 2650$ For 150 V bias, $\mu_e + \mu_h = 2600$

$R = 1\Omega$ for 35 pC

S cancel out in the calculation.

Note that we do not assume e-h distribute over all diamond, we assume they are confined in a certain region and the border of concentration is sharp.

Internal E field

When e and h start to separate, a thin layer of e, a huge bulk of neutral region in the middle, and a thin layer of h.

Data taken with 50 pC

A dataset taken recently, with bunch charge 50 pC.

Data taken with 11 pC

A dataset taken at the beginnig of the project, with transverse dimension $\sigma = 1$ mm.

w/o R in LTspice

cannot be reproduced well.

Removing the R in LTspice and setting directly a shorter lifetime in TCAD, the reflection