

Development of a novel highly granular hadronic calorimeter with scintillating glass tiles

Dejing Du (Institute of High Energy Physics, CAS) On behalf of CEPC Calorimeter Working Group

> ICHEP 2022 at Bologna July 8, 2022

Motivations

- Future electron-position colliders (e.g. CEPC)
 - Main physical goal: precision measurements of the Higgs and Z/W bosons
 - Challenge: unprecedented jet energy resolution $\sim 30\%/\sqrt{E(GeV)}$
- Particle Flow Algorithm (PFA)
 - Choose sub-detector best suited for each particle type (charged, photons, neutral hadrons)
 - Require good separation power of close-by particles in calorimeters
- High granularity calorimetry for PFA
 - Hardware challenge: readout channels on the order of 1~10 million

Motivations

- CEPC physics programs
 - Hadronic decays of Higgs/Z/W bosons: abundant hadrons (<10 GeV) within jets
- CEPC 4th concept detector: crystal ECAL + scintillating glass HCAL
 - A leap in terms of sampling fractions
 - Aim to improve the energy resolution: esp. the hadronic resolution
 - Physics performance goal: Boson Mass Resolution(BMR) $4\% \rightarrow 3\%$

Calorimeters: crystal ECAL and Scintillating Glass HCAL

3

Outline

Outline

- Performance of scintillating glass HCAL
 - Geant4 simulation with single hadrons
 - Physical performance: BMR
- Scintillating glass material R&D
 - Measurements of scintillating glass samples
- Studies on the performance of HCAL detector unit
 - MIP response: experiment and simulation
 - Requirements on key parameters
- Summary and prospects

Hadronic calorimeter (HCAL) design: reminder

- CEPC CDR baseline: Scintillator-Steel AHCAL
 - 40 sampling layers
 - Plastic scintillator (sensitive): 3 mm thick
 - Steel (absorber): 20 mm thick
 - Tile size: $30 \times 30 \ mm^2$
- Scintillating glass HCAL
 - Replace plastic scintillator with scintillating glass
 - Glass tile design: ongoing optimization

CEPC AHCAL prototype schematics

"SiPM-on-Tile" design

Single layer of CEPC AHCAL prototype 2022/7/8

Performance of HCAL with scintillating glass

Energy Resolution

Incident particle: K_L^0 (1-100 GeV) Component: $B_2O_3 - SiO_2 -$ $Al_2O_3 - Gd_2O_3 - Ce_2O_3$ Density: 4.94 g/cm^3 (goal: $> 6 g/cm^{3}$)

- Performance potentials: comparison
 - Followed by detailed studies (next pages)
- Scintillating glass: better hadronic energy resolution in low energy region (< 30 GeV)
 - Most hadrons at CEPC are with low energy

Impact of thickness to hadronic energy resolution

- Varying thickness: glass and steel
 - Each layer fixed with ~0.12 λ_I
 - Total depth ~4.8 λ_I with 40 layers
 - Nuclear interaction length λ_I
 - Glass = 22.4 *cm*
 - Steel = 16.8 *cm*
- Better energy resolution with thicker scintillating glass

Impact of thickness to hadronic energy resolution

- Varying thickness: scintillating glass tiles and steel plates
- Extraction of stochastic and constant terms in energy resolution

- Energy threshold has a significant impact on the energy resolution
- Resolution will not be improved when glass gets thicker for a given threshold
- Higher threshold significantly degrades the constant term
- Lower threshold would always be desirable for better resolution

Physical performance: BMR

- Ideal homogenous scintillating glass HCAL
 - Preliminary results: ~10% improvement in BMR
 - Expect further improvements: e.g. optimization of PFA

2022/7/8

Outline

- Performance of scintillating glass HCAL
 - Geant4 simulation with single hadrons
 - Physical performance: BMR
- Scintillating glass material R&D
 - Measurements of scintillating glass samples
- Studies on the performance of HCAL detector unit
 - MIP response: experiment and simulation
 - Requirements on key parameters
- Summary and prospects

Glass Scintillators R&D Group

Jinggangshan University 井冈山大学

Beijing Glass Research Institute 北京玻璃研究院

China Building Materials Academy 中国建筑材料研究院

China Jiliang University 中国计量大学

Harbin Engineering University 哈尔滨工程大学

Harbin Institute of Technology 哈尔滨工业大学

Sichuan University 四川大学

Measurements of scintillating glass samples

- Comprehensive measurements of key properties
 - Transmission/emission spectra, light yield and decay time
- Over 30 pieces of scintillating glass have been tested, most of which have poor performance
- The best performance glass with the composition: $B_2O_3 SiO_2 Al_2O_3 Gd_2O_3 Ce_2O_3$

Zhehao Hua (IHEP)

Measurements of light yield

Zhehao Hua (IHEP)

ICHEP 2022

Measurement results of scintillating glass samples

Number	Density (g/cm ³)	Transmittance (%)	Light yield (ph/MeV)	Energy Resolution (%)	Decay time (ns)	Emission peak (nm)
#1	~4.5	50	546	30.84	273,1004	394
#2	~4.5	78	536	37.87	334,939	392
#3	~4.5	75	680	29.41	351,1123	393
#4	4.65	74	660	31.82	308,1363	396
#5	4.94	64	705	27.97	354,760	392
#6	4.53	67	802	26.77	318,1380	393

• The light yield of scintillating glass sample reached 800 ph/MeV (until December 2021)

- Latest sample measurement result: light yield reached 1600 ph/MeV, but density < 4 g/cm^3
- Next steps
 - Increase density (6 g/cm^3) while keeping light yield (1000-2000 ph/MeV)
 - Develop cm-scale samples

Outline

- Performance of scintillating glass HCAL
 - Geant4 simulation with single hadrons
 - Physical performance: BMR
- Scintillating glass material R&D
 - Measurements of scintillating glass samples
- Studies on the performance of HCAL detector unit
 - MIP response: experiment and simulation
 - Requirements on key parameters
- Summary and prospects

MIP response: cosmic-ray test

- MIP (minimum-ionization particle) response
 - Basis for energy reconstruction
 - Muon is a good MIP candidate
 - Cosmic muons used for MIP calibration
- Glass sample with highest light yield
 - MIP response: 277 p.e./MIP

Geant4 full simulation and validation

- Simulation setup
 - Scintillating glass $(4.5 \times 4.5 \times 3.5 mm^3)$
 - $6 \times 6 mm^2$ SiPM
 - Small air bubbles are included
- 1 GeV mu- (regard as MIP particle)

- MIP response in simulation
 - Perpendicular incidence (ideal)
 - Energy deposition: 2.0 MeV/MIP
 - #detected photons: 257 p.e./MIP
- Simulation validated by measurements
 - Reasonable consistency achieved

P.E.

Uniformity scan: impact of tile thickness

- Considering response and uniformity, the optimal thickness is ~10mm
- Plan to develop scintillating glass with thickness ~10mm, transmittance is an important parameter
- Uniformity can be further optimized with new glass tile designs

Requirements for key parameters

Key parameters	Value	Remarks	
Tile size	~30×30 mm ²	Reference CALICE-AHCAL, granularity, number of channels	
Tile thickness	~10 mm	energy resolution, uniformity and MIP response	
Density	6-7 g/cm ³	More compact HCAL structure with higher density	
Intrinsic light yield	1000-2000 p.e./MeV	_ Higher intrinsic LY can tolerate lower transmittance	
Transmittance	~75%		
MIP light yield	~150 p.e./MIP	Needs further optimizations: e.g. SiPM type, SiPM- glass coupling	
Energy threshold	~0.1 MIP	Higher light yield would help to achieve a lower threshold	
Scintillation times	~100 ns	Mitigation pile-up effects at CEPC Z-pole (91 GeV)	
Scintillation spectrum	Typically 350-600 nm	To match SiPM PDE and transmittance spectra	

• Ongoing R&D activities focus on these key parameters

Summary and prospects

- A novel HCAL concept with high-density scintillating glass
 - High granularity for PFA
 - Performance of scintillating glass HCAL: better energy resolution in low energy region
 - Scintillating glass R&D and characterization of glass samples
 - Studies on the performance of HCAL detector unit
- Prospects
 - To further improve the energy resolution: e.g. "Software compensation" technique
 - Improve uniformity of a scintillating glass tile through tile-designs
 - Scintillating glass R&D: improve density while keeping light yield, develop large-sized samples

Thank you!

Backups

Definition of energy resolution

Categorize energy depositions

- Incident particle: K_L^0 Categorize energy depositions of hadronic showers: EM, hadronic, invisible homogeneous HCAL **Component Energy Ratio** HCAL Esum ratio at Run18 (100 GeV) HCAL Esum ratio at Run01 (1 GeV) HCAL Esum ratio at Run05 (5 GeV) HCAL Esum ratio at Run10 (10 GeV) HCAL Esum ratio at Run15 (50 GeV) Esum EM ratio Esum EM ratio Esum EM ratio Esum EM ratio 900 E Esum EM ratio 700 F 1200 1400 250 Esum: Hadr ratio 800 -600 E Esum: Inv. ratio 1000 1200F 700 E 200 500 E 600 F 800 1GeV 5GeV 10GeV 50GeV 100GeV 150 8 400 F \$ 500 E 800 600 400 E 300 E 600 300 E 400 200 F 400 200 200 100 200 20 30 40 50 60 70 8 HCAL Esum Ratio of Components 70 20 30 40 50 60 70 80 HCAL Esum Ratio of Components / % HCAL Esum Ratio of Components / 9 HCAL Esum Ratio of Components / % Energy Sum (Raw) of all tiles HCAL Energy Sum with Energy Threshold at Run01 (1 HCAL Energy Sum with Energy Threshold at Run05 (5 HCAL Energy Sum with Energy Threshold at Run18 (100 GeV) CAL Energy Sum with Energy Threshold at Run15 (5 celEsumThr1 Rur Examplet R 700 1000 1000 350 E ntries 10000 10000 Entries 400 F 500 3.914 0.9797 1ean 8.078 41.8 lean 600 300 Ē 1GeV Std Dev 0.1665 350 Std Dev 0.3943 10GeV 50GeV 100GeV Std Dev 4.72 5GeV Std Dev 0.6223 Std Dev 2.47 800 400 F nderflow Inderflow Inderflow Underflow Underflow 500 F 300 F 250 verflow erflow Overflow Overflow Overflow 600 8 250 E 400 ≝200 E 300 li 200 300 150 400 200 150 200 100 100 100 40 50 60 70 80 HCAL Esum (TileEnergy>0.1MIP) / GeV HCAL Esum (TileEnergy>0.1MIP) / GeV
 - EM energy deposition usually detected with higher efficiency
 - EM component fraction: incident energy dependent
 - EM/hadronic energy depositions: non-Gaussian fluctuations

Calculation of light yield

--Absolute light yield: The formula of the light yield: $LY_s = \frac{Mean_{energy}*1000 \text{keV}}{Mean_s*PDE_w*PCE*Energy}$

Calculated by different Almighty peak of radioactive source, the light yield of #6 glass is 802 ph/MeV;

--Relative light yield: Calculate the relative light yield of glass through BGO standard crystal,

the light yield of #6 glass is 845 ph/MeV;

--The light yield of the glass calculated by the two methods is the same.

Transmission spectrum, emission spectra and decay time

- Transmittance of samples can reach up to 78%
 - air bubbles, heavy metal ratio will affect its transmittance
- Emission peak is around 393 nm
 - can be matched with the detector band by adjusting the composition
- The decay time of GS5 is 354 ns (18%), 760 ns (82%)

Zhehao Hua (IHEP)

Uniformity scan: impact of tile size

Threshold impacts

- Higher threshold can suppress noise impacts
 - SiPM dark noise is negligible (< 1 Hz) when threshold > 4.5 p.e.
- Electronics threshold vs. energy threshold (HCAL reconstruction)
 - 0.1 MIP (energy) \rightarrow 14 p.e (voltage)
- Energy threshold of 0.1 MIP is feasible

ICHEP 2022