TORCH

Jonas Rademacker (University of Bristol) on behalf of the TORCH collaboration.

TORCH (Time Of internally Reflected CHerenkov light) principle

LHCb particle ID with RICH + TORCH (planned for Upgrade ii)

LHCB-TDR-023

10GeV and K-p separation up to 20 GeV.

Achieved through 70ps per photon, with ~30 photons per track.

TORCH brings positive Kaon ID below 10GeV, positive proton ID below 20GeV

The image on the detector plane from a single track (w/o pixelisation)

The image on the detector plane from a single track (w/o pixelisation)

Including the time component

The 2-D image might look busy, but full PDF is in 3 dimensions, where it is actually rather sparse.

Photo detector geometry

128x8 effective* pixel layout driven by need to resolve wavelength components

^{*)} achieved with 64x8 physical readout pads, interpolated using charge sharing

The MCP-PMT

Prototype developed by our industrial partner, <u>Photek</u>

- 64 x 8 readout pads
- Required 128x8 resolution achieved through charge sharing.

JINST 10 (2015) 05, C05003

Readout electronics

JINST 10 (2015) 02, C02028 JINST 17 (2022) 05, C05015

Current: Custom design inspired by ALICE TOF, based on NINO (NIM A533:183-187(2004), and HPTDC (IEEE58:202(2011)).

Ongoing: calibration of readout electronics

Future: developing new system based on picoTDC

Lab tests of phase III prototype tubes

Quantum Efficiency

Peak QE consistently around 15-20% in blue/ UV region. Up to 26% has been achieved in earlier prototypes. Expect that performance to be recovered in production tubes.

Time resolution including readout electronics

 90.0 ± 3 ps (operation of electronics in default mode) 47.5 ± 0.7 ps (operation of HPTDC in special 25ps mode); comparable to expectation of 50 ps

NIM A 1038 (2022) 166950

ProtoTORCH in testbeam

arXiv:2111.04627 (2021)

Half height

ProtoTORCH photon counting in testbeam

arXiv:2111.04627 (2021)

Mean number of photons

	Data	Sim	Ratio
Position 1	2.77	2.75	0.99
Position 2	1.53	1.54	1.01
Position 3	1.00	1.07	1.07
Position 4	0.74	0.81	1.09

Photon yields well understood.

arXiv:2111.04627 (2021)

Photon Hit 1 Hit 2 Hit 3 Cluster

Time resolution per photon in testbeam

Design goal of 70ps/photon is within reach.

right now, with newly commissioned system)

Event Reconstruction

New analytic reconstruction is O(100) time faster than the previous one... but we need even better performance for LHCb UG II conditions.

The algorithm offers a lot of un-explored room for parallelisation. Investigating porting it to GPUs, and novel hardware architectures such as Graphcore's IPUs.

LHCb-PUB-2022-007, LHCb-PUB-2022-004.

Simulated TORCH performance for LHCb Upgrade II

LHCb-PUB-2022-006, LHCb-PUB-2022-007

Efficiency across Dalitz plot for $\Lambda_b \to J/\psi Kp$ (simulation)

- Amplitude analyses of multi body decays like $\Lambda_b \to J/\psi Kp$, and $B^0 \to DDK\pi \to 3K3\pi$ critical, and tend to yield low-momentum particles, where TORCH shines its light.
- Baryons are exciting: CPV in baryons? Exotics hadrons (e.g. pentaquarks), and many more. TORCH critical to identifying the protons that result.
- TORCH substantially improves flavour tagging with soft kaons especially important for $B_{\rm S}$.
- More ideas: Deuteron, search for heavy charge particles (like Rhadrons), ...
- But it's not only PID: TORCH timing could help "disentangle" the very busy events in LHCb upgrade II.

Conclusions

TORCH is a new, large area time of flight detector with a resolution of ~15ps.

· Concept proven in testbeam and laboratory; impact studied in detailed simulation.

• In LHCb upgrade II, TORCH will extend LHCb's particle ID capabilities; with potentially additional benefits from TORCH's precision timing in event reconstruction.

- Future R&D programme: pico-TDC-based electronics, improved (faster) pattern recognition, mechanical and other aspects of its integration into LHCb UG II.
- · Already this autumn: first fully instrumented prototype.

Backup slides

Event Reconstruction

For every track and reflection hypothesis (left, right, left and right, etc), a hit on the detector plane corresponds to one photon path from which we know θ_C , ϕ and the path length. From θ_C we get the wavelength/energy and thus the velocity of the photon.

$$P(E, \phi) \propto \varepsilon(E, \phi) \frac{\alpha}{2\pi\hbar c} \sin^2 \theta_C$$

$$P(x_{\text{det}}, y_{\text{det}}, t_{\text{det}}) = \frac{1}{\sqrt{2\pi\sigma_t}} e^{-\frac{(t_{\text{det}} - t(\beta, E, \phi))^2}{2\sigma_t^2}} P(E, \phi) \left| \frac{\partial(E, \phi)}{\partial(x_{\text{det}}, y_{\text{det}})} \right|$$

LHCb-PUB-2022-004

What physics does it buy us

... mention the below other things such as importance of baryon programme in general, and maybe the deuteron idea

Figure 4.10: The Dalitz plot distribution of $\Lambda_b^0 \to J\psi pK^-$ decays selected with the nominal LHCb PID requirements (left) and with the additional PID provided by TORCH (right).

Reconstruction and simulation notes (in preparation)

- TORCH simulation, LHCb-PUB-2022-005
- TORCH particle identification performance, <u>LHCb-PUB-2022-006</u>
- TORCH reconstruction and particle identification algorithm, <u>LHCb-PUB-2022-007</u>.
- TORCH reconstruction, LHCb-PUB-2022-004.

Reconstruction & fit

LHCb RICH particle ID

The image on the detector plane (w/o pixelisation)

This image represents an analytic PDF (not an MC simulation) that describes the probability to obtain a hit on a point x_{det} , y_{det} on the detector plane at time t_{det} (time dimension not shown, here), for a given particle type hypothesis.

LHCb-PUB-2022-004

Something like this on on readout?

TORCH readout electronics

- Custom readout electronics developed, based on the ALICE TOF system: NINO + HPTDC [F. Anghinolfi et al., Nucl.Instrum.Meth.A533:183-187(2004), M. Despeisse et al., IEEE58:202(2011)]
- NINO-32 provides time-over-threshold information which is used to correct time walk & charge to width measurement. Non-linearities of HPTDC time digitization (100 ps bins) are also corrected
- 128 channel NINO board developed
 [R. Gao et al., JINST 10 C02028 (2015)]
- The calibrations are challenging and work is still ongoing to optimize them

Lab tests

Illuminate MCP-PMT with fast pulsed laser Full readout electronics connected.

Measured resolution: of 49.6 ps

Comparable to expectation of 50 ps

Aiming for 70ps time resolution per photon.

For ~30 detected photons/track, need $\sigma_{\gamma} \approx 70 \mathrm{ps}$ per photon for $\sigma_{total} = 70 \mathrm{ps} / \sqrt{30} < 15 \mathrm{ps}$

Needs:

Fast photo detectors.

Multi-channel plate PMTs

Fast electronics:
Custom design
(JINST 10 C02028 (2015))
using NINO (NIM
A533:183-187(2004),
and HPTDC
(IEEE58:202(2011)).

Superb optical components

Readout electronics

Current: Custom design (JINST 10 C02028 (2015)) inspired by ALICE TOF, based on NINO (NIM A533:183-187(2004), and HPTDC (IEEE58:202(2011)).

Future: new system based on picoTDC

The image on the detector plane from a single track (w/o pixelisation)

Width of lines because: different wavelengths emitted at different θ_C , travel with different propagation velocity, and different path length. We need to resolve this.

This image represents an analytic PDF (not an MC simulation). LHCb-PUB-2022-004

The MCP-PMT

- Dual micro channel plate (MCP) with 10-25 µm pores
- Conformal coating of Al_2O_3 or MgO through Atomic Layer Deposition results extended lifetime of tube ($5C/cm^2$).

Prototype developed by our industrial partner, <u>Photek</u>

- 64 x 8 readout pads
 - Required 128x8 resolution achieved through charge sharing.

 JINST 10 (2015) 05, C05003

Current: Custom design inspired by ALICE TOF, based on NINO (NIM A533:183-187(2004), and HPTDC (IEEE58:202(2011)).

Newly commissioned system being used right now to calibrate electronics.

Future: developing new system based on picoTDC

Time resolution per photon in testbeam

Design goal of 70ps/photon is within reach.