Particle identification with a drift chamber for CEPC

Shuiting Xin on behalf of the DC-PID working group for the CEPC 4^{th} conceptual detector

Institute of High Energy Physics

08 July, 2022 ICHEP 2022

Institute of High Energy Physics Chinese Academy of Sciences

< □ > < 同 > < 回 > < 回 >

The CEPC has been proposed as a Higgs (W,Z) factory, operating in several set of conditions.

- Above ZH threshold ($\sqrt{s} = 240 \text{ GeV}$) with 1M Higgs.
- Around the Z-pole for Tera Z.
- W^+W^- threshold scan.

< □ > < 同 > < 回 > < Ξ > < Ξ

Possible Super pp Collider (SppC) of $\sqrt{s} = 50 \sim 100$ TeV in the future.

Physics goal: Higgs, EW, flavor physics & QCD, BSM physics (eg. dark matter, EW phase transition, SUSY, LLP, ...)

The 4th conceptual detector

A drift chamber inserted into Si Tracker is optimized for PID.

Advantage Work at high luminosity Z runs.

Challenge Sufficient PID power within specific volume.

Requires a good PID for charged hadrons up to 20 GeV.

< □ > < □ > < □ > < □ > < □ >

э

3/15

Physics impact of the PID

Hadron identification are essential for many flavour physics studies.

• Disentangle the various $B^0_S(B^0) \to h^- h^+$ in same topology final-states.

dE/dx and dN/dx measurement

Energy loss (dE/dx):

- Fluctuations of N_p and transferred energy result in Landau distribution.
- Lost information due to mean truncation.

Cluster counting (dN/dx): Measure number of clusters per length.

• Clean in statistics:
$$P(N_p, k) = \frac{N_p^k}{k!} e^{-N_p}$$

• Theoretical resolution: $\frac{1}{\sqrt{N_p}} = \frac{1}{\sqrt{\rho_{cl} \times L}}$ potentially a factor of 2 better.

[Nucl.Instr. and Meth.A 386(1997)458.]

- Signal generation with Garfield ++
- Heed: ionization process
- Magboltz: gas properties

- Pre-amplifier
- Noises
- ADC

Essential part

• Peak finding algorithm.

The Monto Carlo sample of induced current takes electron transport, gas multiplication, electron avalanche etc. into account.

Simulated a single charged track going though cells.

Gas mixture decision: $He + iC_4H_{10}$ as small cluster density and large time separation.

		60 -	~				4410
Parameters setup		50 -		\searrow		- ne/iC	-
Track direction	$\cos \theta = 0$	Ê 40 -					-
Cell size	18 x 18 mm) 30 -				He80)
Field wires / sense wires	3:1	-				\odot	He90
Gas mixture	$He/iC_4H_{10} = 90/10$	20 -					\mathbf{O}
Gas gain	10 ⁵	10 -					-
			50	60 70 80 90 Ratio of He (%)			

э

(日) (四) (日) (日) (日)

Digitization

A simple current-sensitive pre-amplifier is assumed.

• A transform function is convoluted to signal.

Noise generation

• Noise Ratio = $\frac{\sigma_{Noise}}{A_{signal}}$

Looking for fast and efficient peak finding algorithms.

- Smoothing: filter out frequency noises in the waveform in order to improve the S/N ratio.
- Oerivative: The start of a peak will be determined by a change in the derivative.
 - not sensitive to baseline
 - Can be easy to implement in hardware.

Pile-up on the failing edge is easier to recover but not for the case on the rising edge.

Image: A matrix

The figure of merit of parameters optimization is the ${\rm K}/\pi$ separation power

$$n = \frac{|(dN/dx)_{\pi} - (dN/dx)_{\kappa}|}{(\sigma_{\pi} + \sigma_{\kappa})/2}$$

< □ > < □ > < □ > < □ > < □ >

æ

Results from different gas mixtures.

 $He90\% + iC_4H_{10} / He80\% + iC_4H_{20}$, L=1m, 1×1cm cell

- $He90\% + iC_4H_{10}$ has better K/ π separation for high momentum.
- $He80\% + iC_4H_{10}$ has better K/ π separation for low momentum.
- $\bullet\,$ PID in low momentum region can be covered by timing detector $\to\,$ He 90% is favored.

(日) (四) (日) (日) (日)

The resolution scales with $1/\sqrt{L}$

- A $2\sigma K/\pi$ separation at 20 GeV/c can be achieved with 1 m track length.
- The requirement of separation power needs further studies with physics channels.

Summary and Outlook

- Studied cluster counting with CEPC drift chamber. 2 $\sigma K/\pi$ separation up to 20 GeV/c @ 1m length.
- Study the PID requirement from physics channels.
 - Physics input to constrain the detector parameters
 - Delphes fast simulation is ongoing.
- More effective peak finding algorithm.
 - An algorithm using deep learning is being developed. Preliminary study shows promising results

Note: noise ratio in beam-test data is close to 10%.

K/π separation vs polar angles

No space charge in simulation

2

< □ > < □ > < □ > < □ > < □ >