

The IDEA detector concept for FCC-ee = and CepC

G. Gaudio (INFN Pavia)

on behalf of the IDEA proto-collaboration

IDEA:Innovative Detector for e⁺e⁻ Accelerator

IDEA concept

- Muon chambers
 - + μ Rwell in the return yoke
- + Dual-readout calorimetry 2m / 7 λ_{int}
 - Preshower μRwell
- Thin superconducting solenoid
 2T, 30 cm, ~ 0.7 X₀, 0.16 λ @90°
- Transparency for tracking
 - ✦ Si pixel vertex detector
 - Drift Chamber
 - Si wrappers (strips)
- ✦ Beam Pipe: R ~ I.5 cm

FCC-ee/CepC General requirements

+ $\Delta(1/p_T)$

- high precision measurement at the end of tracker
- $\sigma_{r\Phi}$
 - finely segmented vertex detector
- Challenging requirements for detector materials

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$- m_H, \sigma(ZH)$ $BR(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b \bar{b} / c \bar{c} / g g$	$BR(H \rightarrow b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$\begin{array}{c} BR(H \to q\bar{q}, \\ WW^*, ZZ^*) \end{array}$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	$\mathrm{BR}(H \to \gamma \gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

Vertex detector

Requirements

- ✦ Fast readout
- Low power < 20 mW/cm²
- ✦ Low material ~ 0.15 X₀
- + Spatial resolution $\sim 3 \,\mu m$
- ✦ Efficiency ~ I00%
- Extremely low fake rate

exploiting progress in the ARCADIA R&D program

Arcadia project

- CMOS DMAPs Platform
 - INFN project, w/ CH and China
 - Project within EU AIDAInnova
- ARCADIA-MDI: pixels 25×25 μm²
 - tested sensor and back-side processing
 - readout architecture charact. ongoing
 - I I0 nm CMOS CIS technology, high-resistivity bulk, operated in full depletion mode
 - Matrix = 512×512 pixels
 - Thickness = 200 μm
- ARCADIA-MD2 submitted in summer '21
 - design and architecture improvements targeting power reduction, scalability

Drift CHamber

Compromise between granularity and transparency

- High momentum resolution
- Ultra light detector
- Assisted by Si wrappers

Dimensions

- ♦ L = 400 mm
- ♦ R = 35 ÷ 200 cm
- ✦ Total thickness: I.6% of X₀ at 90°
 - Tungsten wires dominant contribution
- ♦ I 2 layers for each 15° azimuthal sector

Inherit from previous DCHs

KLOE and MEG II

DCH: Particle ID with cluster counting

- Tracks have rather low momenta ($pT \leq 50 \text{ GeV}$)
 - Transparency more relevant than asymptotic resolution
- ✦ He based gas mixtures (90% He 10% iC₄H10)
 - ionization signals last few ns
 - max drift time: 350 ns
- Fast readout (~GHz sampling)
- PID counting dN_{cl}/dx
 - # of ionization acts per unit length
 - PID w/ better resolution than dE/dx
- 0.75
 - I00 ps enough for 3σ K/p

Istituto Nazionale di Fisica Nucleare

Si wrappers

Si wrappers: ATLASPIX3

• pixel size $50 \times 150 \ \mu m^2$

- \bullet 150 mW/cm²
- both triggerless and triggered readout
- First 2 multi-chip modules has been operated successfully
- Target: build few mini-staves of an outer tracker for FCCee/CepC
 - ✤ 2022: realization of prototypes and thermo-mechanical characterization

Superconducting solenoid

Ultra light 2 T solenoid:

- Radial envelope 30 cm
- \succ Single layer self-supporting winding (20 kA)
- Cold mass: $X_0 = 0.46$, $\lambda = 0.09$
- > Vacuum vessel (25 mm Al): $X_0 = 0.28$
- Can improve with new technology \succ
 - \succ Corrugated plate: X₀ = 0.11
 - \succ Honeycomb: X₀ = 0.04

G. Gaudio - ICHEP 2022 - July 8th, 2022

Courtesy of H. TenKate

Fcc-ee/CepC general requirements

- Fair $\sigma_{FM} \sim 10-20\% / \sqrt{E}$ sufficient for Higgs physics • $\sigma_{\text{jets}} \sim 30-40\% / \sqrt{E \text{ to clearly}}$ identify W, Z, H in 2 jets decays
- Transverse granularity < I cm</p> for Π_0 from τ and HF
- It could be satisfied by
 - a dual readout fiber calorimeter w/ SiPM readout
 - a combined dual readout crystal/fiber calorimeter

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$- m_H, \sigma(ZH)$ $\mathbf{BR}(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b \bar{b} / c \bar{c} / g g$	$BR(H \rightarrow b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta} (\mu{ m m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$\begin{array}{c} BR(H \to q\bar{q}, \\ WW^*, ZZ^*) \end{array}$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

All-fiber DR calo option

- DR fiber calorimeter
 - ~ I 30 M fibers
 - + I mm Ø, I.5 mm pitch
 - Copper absorber
 - ✤ 75 projective towers x 36 slices
 - + $\Delta \vartheta = 1.125^{\circ}, \Delta \varphi = 10.0^{\circ}$
 - + ϑ coverage: ~0.100 rad
- G4 simulation available
 Tuned to RD52 TB data

Scintillation fibers

Cherenkov fibers

Crystal option

Preshower and muon detector

Preshower Detector

High resolution space points before the calorimeter to improve cluster reconstruction

Muon detector

- + Identify μ and search for LLPs
- ✤ 3 layers in the return joke

Both based on tha same technology: μ-RWELL

- ✦ Efficiency > 98%
- Mass production
- Optimization of FEE channels/cost

Preshower and muon detector

Preshower Detector

- Pitch 0.4 mm
- Resolution < 100 μ m
- I.5M channels

Muon detector

- Pitch I.5 mm
- Resolution < 400 μ m
- 5M channels

✤ 50x50 cm² 2D tiles

to cover more than 4330 m²

7 μ -RWELL prototypes with resistivity varying between 10 and 80 MOhm/ \Box will allow to define best resistivity for final 50x50 cm² detector

Similar design for the Muon detector

Conclusions: a lot R&Ds in each area

- Vertex detector w/ DMAPs for best momentum resolution ♦ Work in progress. E.g. Arcadia
- Silicon wrapper R&D starting from the ATLASPIX3 chips ★ also for the outer layers of the vertex
- Wire chamber R&D ongoing on many aspects Lot of work to demonstrate the cluster counting performances
- Dual readout: project for full containment prototype EM Crystal option, w/ DR
- Preshower and muon system based μ -RWELL technology
 - ♦ R&D on DLC resistive, long strips, 2-D sensors, custom ASIC

Drift CHamber

Thin wires

- + 20 μ m sense W(Au)
- 40 μm field Al(Ag)

♦ 56448 square cells

- ◆ 12 to 15.5 mm wide
- ✤ 360 ns drift time
- Zipped layers -> more uniforme field

♦ 14 coaxial super-layers

- ♦ 8 layers alternating sign stereo angles
- in 24 azimuthal 15° sectors \blacklozenge

Drift CHamber: transparency

• 0.016 (0.050) X₀ to barrel (end-cap) calorimeter
 • Acceptance θ > 14° (260 mrad)

IDEA: Material vs. $cos(\theta)$

Additional requirements

 Excellent acceptance and luminosity control E.g. ECAL inner radius known at 15 μm 	000°2 [GeV/0]2
 B ~ 2T for beam emittance preservation Maximize tracking volume 	300
 Bunch spacing at Z pole ~ 25 ns Limited drift-time 	200
 PID & π₀ ID for HF/τ physics dE/dx or TOF 	100
 Muons in ZH events have rather small p_T Transparency more relevant than asymptotic i 	% resoluti

Geant 4 simulation

- Gaussian resolution
- ✦ Adequate separation of W/Z/H

Geant 4 simulation

Good resolutions averaged over eta and phi

Event displays

50 GeV e⁻

G. Gaudio – ICHEP 2022 – July 8th, 2022

100 GeV **π**⁰

23

test beam: resistivity validation

R&D: optimal DLC resistivity by studying spatial performance

- Preshower: 10, 30, 50, 70, > 100-200 MOhm/square
- Muon: 15, 35 MOhm/square

• Eg: effect of resistivity on charge spread

test beam results

Residuals and efficiency for different resistivities •

Giacomelli @ Ist FCC Italy Workshop (03/2022)

Istituto Nazionale di Fisica Nucleare

2D μ -RWELL ideas

$\mu\text{-RWELL}$ w/ 2D

anode readout

- Good performance but need higher gain wrt. to ID
- More complex PCB construction

2 stacked ID $\mu\text{-RWELL}$

- + I view per μ-RWELL
- easy PCB construction
- 2D performance to be measured

Giacomelli @ Ist FCC Italy Workshop (03/2022)

Istituto Nazionale di Fisica Nucleare

μ -RWELL with strips on top and anode

- + HV on DLC
- + TOP to ground
- 2D performance to be measured

μ -RWELL: asic

- Test with TIGER ASIC
 - Developed for BESIII CGEM-IT
- Prepare new readout
 card based on
 System On Modules
 - Aim: develop dedicated
 ASIC for μ-RWELL

Measured performance TIGER ASIC

_	Parameters	Values
	Input charge	5-55 fC
-	TDC resolution	30 ps RMS
	Time-walk (5-55 fC range)	12 ns
	Average gain	10.75 mV/fC
	Nonlinearity (5-55 fC range)	0.5%
	RMS gain dispersion	3.5%
	Noise floor (ENC)	1500 e ⁻
	Noise slope	10 <i>e</i> ⁻ /pF
	Maximum power consumption	12 mW/ch