
Small-pad resistive Micromegas for high-rate environment

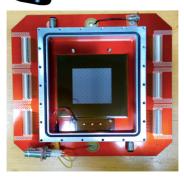
Roberto Di Nardo

On behalf of the RHUM collaboration:

M. ALVIGGI^(1,2), M.T. CAMERLINGO⁽¹⁾, V. D'AMICO^(3,4), M. DELLA PIETRA^(1,2),

M. IODICE ⁽³⁾, F. PETRUCCI ^(3,4), G.SEKHNIAIDZE ⁽¹⁾, M. SESSA ^(3,4)

(1) INFN Napoli (2) University Napoli Federico II, (3) INFN Roma Tre (4) University Roma Tre, (5) CERN, (6) University Napoli Parthenope


XLI International Conference on High Energy Physics July 6th - 13th 2021 Bologna (Italy)

The RHUM project

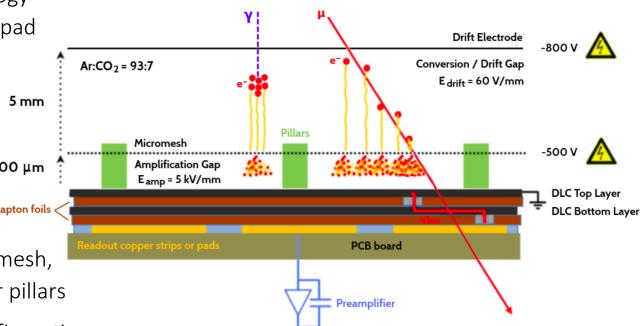
RHUM Resistive High

gran**U**larity

Micromegas

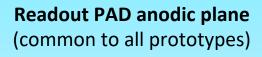
- Develop a MicroPatternGaseousDetector, based on the Micromegas technology, able to work efficiently at particle rates up to several MHz/cm²
- Implement a small pad readout to reduce the occupancy
 - O(mm²) for high rate capability and good spatial resolution in both coordinates
- Optimize the spark protection resistive scheme to achieve stable operation at high rate/gain
- Demonstrate the detector scalability to large surfaces
- Simplify the construction techniques for industrial production
- R&D started in 2015 (INFN and University of Napoli and Roma Tre) in collaboration with CERN and with the CERN PCB Workshop (Rui De Olivera) for prototype construction.
 - Very fwd muon tracking extension in existing experiments

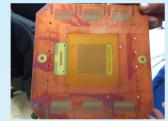
Possible applications in HEP


- Muon detector/TPC @ future accelerators
 - Readout for sampling calorimeter

Micromegas technology

- Resistive MicroMeGas technology
- → cover readout copper strip/pad with a resistive insulator to suppress discharges
- Drift region of ~5 mm width


 (→ E~60 V/mm) and
 Mage: Amplification region of
 ~100 µm (E~5 kV/mm)
 separated by a metallic micro-mesh,
 supported by 0.8 mm diameter pillars
- Geometrical and electrical configuration to guarantee a fast ion evacuation
 - fundamental for high rate applications
- Demonstrated to be a solid detector technology for HEP experiments

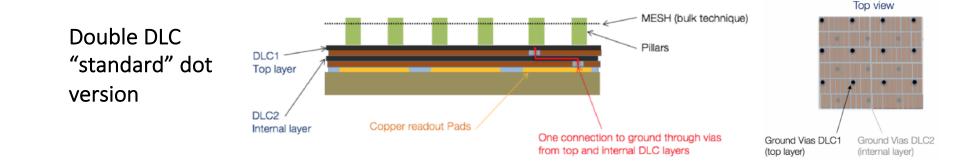

The small-area Prototypes

• Several prototype built and tested with a common readout scheme but different spark protection resistive schemas

4.8 x 4.8 cm² active region 768 pads, 0.8 x 2.8 mm² each 48 pads – 1 mm pitch ("x") 16 pads – 3 mm pitch ("y")

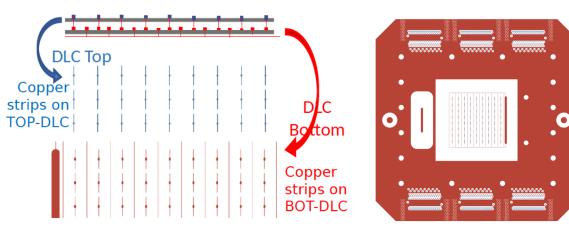
Routing to six Panasonic connectors

Configurations of the resistive layers Two main categories: **Pad-patterned** and **uniform DLC layers**


Pad-patterned Mesh Resistive pad Embedded resistor R/O PCB

- Prototype name: PAD-P3
- Resistive pads connected to the readout copper pads through embedded resistor
- Each pad is completely separated from the neighbors
- Resistance from top pad to copper pads ~ 7-5 $M\Omega$
- Prototype names: DLC20, SBU3, DLC-SG
- Two parallel layers of DLC connected through conducting vias
- Resistivity of 20-50 MΩ/□ for various prototypes

Roberto Di Nardo – Università and INFN Roma Tre

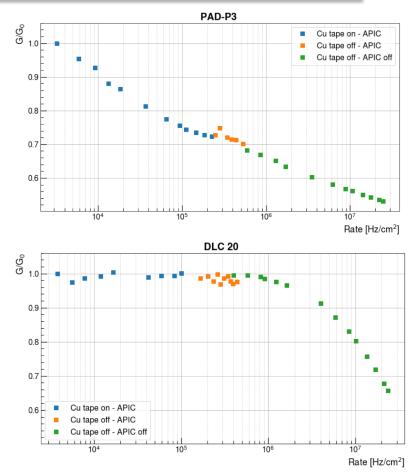

DLC Prototypes: dot and strip version

Double DLC new "Strip" version

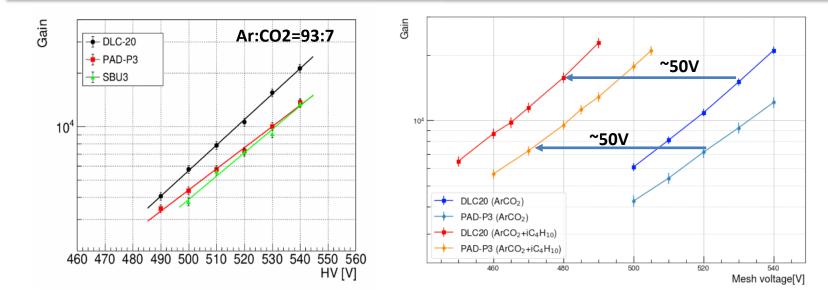
by Rui De Oliveira

- Mix of standard DLC-SBU and Silver-Grid (SG) used in uRWell
- Main goal: keep separate sectors with grounding boundaries to avoid any dependence on the irradiated surface
- Drawback \rightarrow longer pillars \rightarrow smaller active area

Rate Capability with X-rays


• Measured using 8 keV X-rays peak from a Cu target with different intensities (~4 order of magnitude) @ CERN GDD lab

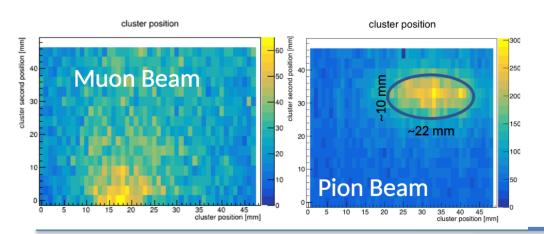
PAD-P resistive scheme


- Relatively fast gain loss for rates < 0.1MHz/cm² due to charging-up effect
- Slower ohmic voltage drop through the individual pads at higher rates

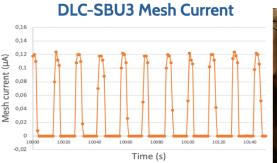
DLC and SBU prototypes

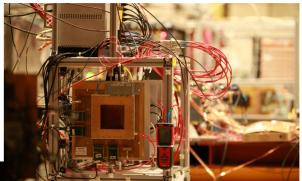
- \bullet Gain essentially stable up to ~1-2 MHz /cm^2
- At higher rates gain loss is fully accounted by ohmic gain drop
- At 10 MHz /cm² ~20% Gain drop

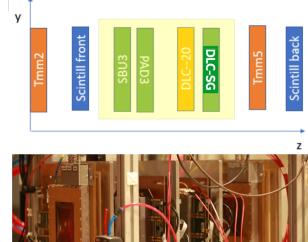
Gain measurements with ⁵⁵Fe source



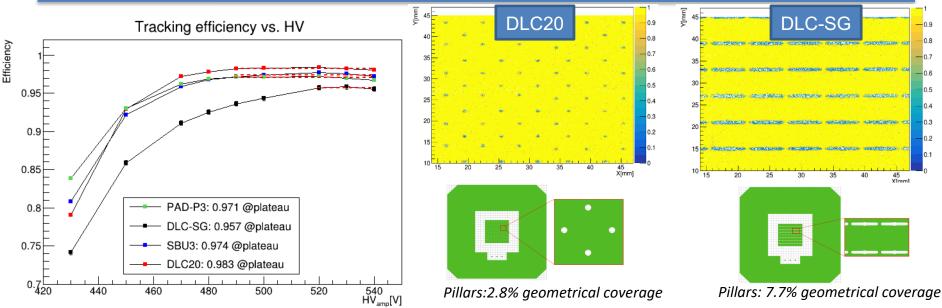
- \bullet Measurements performed using ^{55}Fe source with $^{\sim}\text{20kHz}$ rate
- Lower gain of PAD-P type wrt DLC observed systematically for most of the prototypes. Most likely due to the dielectric charging-up of the kapton surrounding the resistive pads. The different slope of PAD-P3 could be due to an increase of charging- up with gain
- Detector stability improved by adding 2% isobutane to the gas mixture (Ar:CO2:iC4H10 93:5:2)
 - ~50V difference between the two mixtures for a given gain
 - ~20k Gain reached at very high irradiation rates (>10 MHz/cm2) in stable conditions

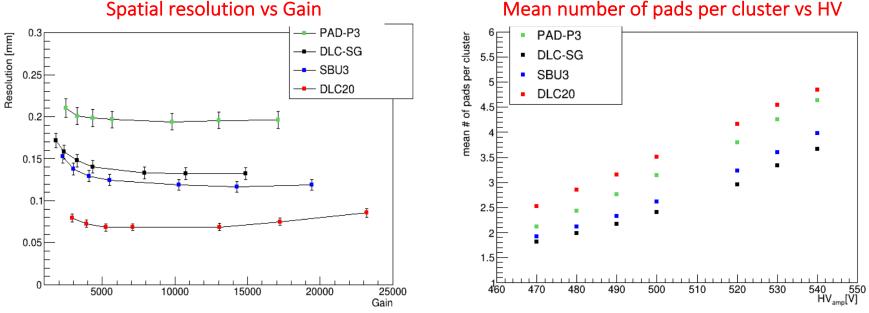

Test beam @ CERN H4


Experimental setup


- 4 small-pad MM under test
- 2 resistive XY strip MM for trackers
- 2 scintillators for the trigger
- DAQ: SRS+APV25
- Muon and pion beams (up to 1.9 MHz)
- Detectors operated with both Ar:CO2 93:7 and Ar:CO2:C4H10 93:5:2 gas mixtures

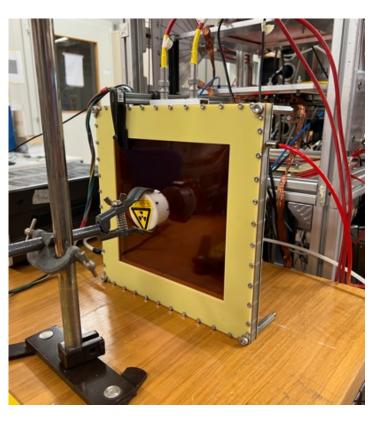
Roberto Di Nardo – Università and INFN Roma Tre

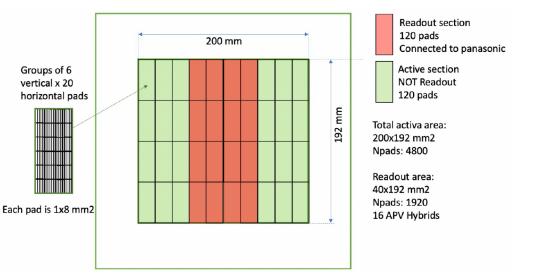




Test beam @ CERN: detector efficiency

- Clusters required to be within 1.5 mm from the extrapolated track position in the precision coordinate
- Detector efficiency > 97% for most of the prototypes!
- Slightly lower efficiency (of ~1-2%) for DLC-SG
 - due to the pillars geometry (larger size) adopted for this prototype

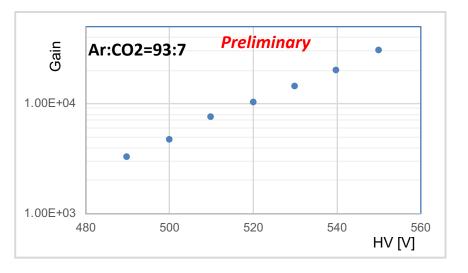

Test beam @ CERN: spatial resolution

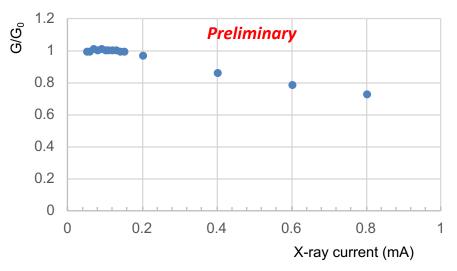


Mean number of pads per cluster vs HV

- Position in each detector computed from the charge-weighted pad position the (cluster centroid)
 - Extrapolation uncertainty \sim 50 μ m (subtracted in quad), systematic uncertainty \sim 5%
- Position resolution obtained fitting the residual distribution in the precision coordinate w.r.t. the reconstructed muon track
- Position resolution affected by several parameters (resistivity, capacitive coupling among the pads and different charge spread) impacting the cluster size

The 20x20 cm² prototype





The big brother:

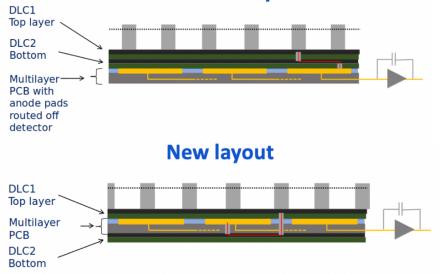
- active area: 200x192 mm²
- Pads 1x8 mm² Total Number of Pads: 4800
- Double layer DLC with grounding vias every 8 mm
- Panasonic connectors on the back of the detector
- Partially readout: 1920 connected pads out of 4800 tot pads

The 20x20 cm² prototype – Preliminary results

Gain measured with ⁵⁵Fe source at ~10KHz

- Gain of 10⁴ reached at ~520V in ArCO2 (93:7)
 - Similar to DLC20 prototype
- FWHM/mean ~ 18%

Preliminary results on rate capability with X-rays


- No collimator ightarrow full area illuminated
 - Detector very stable during the test
- Gain stable up to a X-ray current of 0.2 mA
- Only 15% gain loss at 0.4mA, corresponding roughly to ~10MHz/cm²

Summary

- Several Small Pads Micromegas prototypes have been built employing different solutions for the resistive layout
 - Spark protection resistive schemes explored based on embedded resistors or using uniform Diamond-Like Carbon (DLC) resistive foils
- Performance achieved:
 - stable operation up to 20 MHz/cm² with gain $>10^4$
 - detector efficiency > 97%
 - position resolution < 100 μ m
- New large(r) area prototype built
 - Preliminary results very promising
 - Very stable working condition event at high rate
- Future R&D activities:
 - tracking in high rate environment O(2MHz/cm²), performance studies with larger area prototype, time resolution and ageing studies

Roberto Di Nardo - Università and INFN Roma Tre

Backup

Standard layout

Read-out pads (in yellow in the figures), normally placed under the two resistive DLC foils.

In the new layout they are in between them ightarrow

• capacitance increase to collect a larger fraction of the signal

Pad-Patterned (PAD-P3)

Resistance from top resistive pad to anode pad: 15-25 $M\Omega$ Independent PADs, limited or negligible charge spread

Standard DLC (DLC20)

Resistivity: Top and Bottom foils ~20 M Ω/\Box Grounding vias every 6 mm (12 mm) in the left (right) half of the detector

Read-out pads below the resistive DLC foils

DLC-SBU (SBU3) [Sequential Build-Up technique exploiting copper clad DLC] Resistivity: Top 22 \pm 1 M Ω / \Box – Bottom 42 \pm 8 M Ω / \Box Readout pads between the resistive DLC foils

DLC-SG [Strip Grid grounding scheme] Resistivity: Top 40 \pm 2 M Ω / \Box – Bottom 38 \pm 6 M Ω / \Box Readout pads between the resistive DLC foils Longer pillars to cover the grounding copper strips