

Charged Lepton Flavour Violation

Neutral lepton flavor violation (i.e. neutrino mixing) implies charged lepton flavor violation (CLFV) through neutrino mixing.

However, CLFV processes are strongly suppressed in the Standard Model.

 $BR(\mu \rightarrow e \gamma) < 10^{-54}$ in the SM: negligible.

New Physics can enhance CLFV rates to observable values **Observation of CLFV is an unambiguous sign of New Physics**

The Mu2e experiment @ FNAL (along with COMET in Japan) searches for muon-to-electron conversion in the coulomb field of a nucleus: $\mu^{-} AI \rightarrow e^{-} AI$

Sensitivity to λ (mass scale) up to hundreds of TeV beyond any current existing accelerator

W

- **1. Produce muons** via protons hitting a fixed target
- 2. Stop low momentum **muons in Al target**
- 3. Wait for muon to convert into electron $(t_m^{Al} = 864 \text{ ns})$ yielding a 105 MeV mono-energetic signal electron
- Mu2e measures the μ -e conversion/capture rate
- 10⁴ improvement of current experimental best limit

Experimental technique

• Decay in orbit (39 % for Al) \rightarrow intrinsic background

$$\mu^- + Al \rightarrow e^- \overline{\nu}_e \nu_\mu + Al$$

• Capture (61% for Al) \rightarrow normalization

$$\mu^- + Al \to \nu_\mu + Mg^*$$

• Conversion (<10⁻¹³) \rightarrow our signal

 $R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \nu_{\mu} + N(A, Z-1))} \le 8 \times 10^{-17} (@ 90\% \text{CL})$

Main backgrounds

Intrinsic ($\propto \mu$ stops): μ Decay in orbit, radiative μ captures **Beam**: μ/π DIF, radiative π captures **Other:** cosmics, misreconstructions

INFN

Experiment architecture

- 8 GeV proton beam
- W production target
- 200 ns proton pulse \bullet
- 1.7 us period
- POT produce mostly π
- μ^{-} from π^{-} decays \bullet

D. Paesani ICHEP 2022

8 GeV pulsed Proton Beam

- $10^{10} \mu/s$ selected and transported ullet
- 25 metres long Al-stab Nb-Ti superconductor system •
- Low momentum pulsed (20k μ -/bunch) muon beam
- High resolution (< 200 keV/c) straw-tube tracker ullet
- Electromagnetic calorimeter ullet

DS interface

Work in progress

Detector solenoid

34 Al foils; Aluminum selected mainly for the muon lifetime in capture events (864 ns) that matches nicely the prompt separation in the Mu2e beam structure.

D. Paesani ICHEP 2022

Calorimeter at a glance

Calorimeter architecture

INFŃ

- Two annular disks w/ 674 undoped CsI 34 x 34 x 200 mm³ crystals each
- 10 X₀ (200 mm) crystal depth and 70 disk cm spacing
- 30 cm inner disk bore, 66 cm outer bore
- Readout via 2 large area UV-extended SiPMs per crystal
- SiPM + FEE fluid cooling down to -10° C

Calibration methods

- 530 nm laser for SiPM gain monitoring, equalisation and timing alignment
- Liquid radio source for crystal equalisation w/ 6 MeV photon
- In-situ calibration with crossing MIPs, DIO's and other physics processes

Tasks

- PID capabilities w/ e^{-}/μ rejection factor > 200
- Stand alone online trigger capability (HLT)
- Cluster-based seeding for track finding
- Large acceptance for conversion electrons

Requirements

- energy resolution $\sigma_{\rm E}/{\rm E} = O(10\%)$ @ 100 MeV
- timing resolution $\sigma(t) < 500 \text{ ps} @ 100 \text{ MeV}$
- Fast signal for Pileup and Timing
- $\sigma_{xy} < 1 \text{ cm}$

Operating environment

- 1 T B-field
- 10⁻⁴ mbar vacuum
- TID up to 100 krad
- 1MeV-neq fluence up to $3x10^{12}$ 1/cm² on crystals (RIN<0.6 MeV)

INFN

Calibration systems

${}^{19}F + n \rightarrow {}^{16}N + \alpha \\ {}^{16}N \rightarrow {}^{16}O^* + \beta \quad t_{1/2} = 7 \text{ s} \\ {}^{16}O^* \rightarrow {}^{16}O + \gamma(6.13 \text{ MeV})$

- - other calibration systems
- Crossing cosmic MIPs based calibration at ~ 21 MeV
 - DIO e⁻
 - Radiative pion/muon captures

embedded calibration • 530 nm picosecond laser system for SiPM gain equalisation, monitoring and timing alignment systems • Fluorinert-based liquid radio source emitting 6 MeV photons for crystal equalisation

Signal chain overview

- 2700 readout channels w/ fully custom readout chain (from SiPM to DAQ)
- 10 electronics crates/disk (280 boards total)
- SiPM cooling to -10 °C

INFŃ

2700 Read-Out Units

- Two fully independent readout channels per cry
- 2 large-area UV-extended SiPM
- 2 Front-End Electronics (FEE) boards
 - SiPM amplification and shaping
 - Digitally controlled SiPM monitoring and biasing

140 Mezzanine Boards (MB)

- Slow-control distribution
- FEE power distribution
- ARM-microprocessor based

140 custom digitiser boards (DIRAC)

- Signal digitisation @ 200 Msps w/ 12-bit flash ADC
- Digitisation to allow good signal reconstruction despite the high expected pileup
- PolarFire rad-hard FPGA
- VTRX 10 Gbps optical link to Detector Control System
- DIRAC v3 prototype ready

Read-out units

- Two custom large area UV-extended SiPMs
- Two independent readout channels per crystal
- Fully integrated FEE + slow control board
- Thermal block for SiPM cooling
- Fibre optic coupler for laser system distribution

- **Crystals** production and QC (LY, LRU, F/T, RIN) started in 2018 \rightarrow completed in 2020 \checkmark
- **SiPM** production and QC (Vbr, Idark, TNID irradiation) completed in 2019 \checkmark
- Front-end boards production ended in late 2021
- **Read-out units** assembly and QC in progress \rightarrow refer to E. Sanzani's talk
- **Mechanics** production is being finalised

INFN

- Digital electronics production in progress
- Assembly of the Calo downstream disk is at SiDet, Fermilab: crystal outgassing, stacking and alignment in progress, mechanical structure preloading \rightarrow 1/3 disk completed

Calorimeter production status

Energy resolution

INFN

VST with cosmics

Module-0

- Large scale prototype w/51 crystals matrix
- Same cooling system as final Calorimeter ullet
- Same fibre optic laser calibration system as • final Calorimeter

Vertical slice test

- Final MB and DIRAC versions installed on 1 electronics crate
- Final Mu2e readout chain implemented from FEE to DIRAC digitiser
- Cosmic selector to test whole signal chain with MIPs
- Validation of energy and timing calibration algorithms
- Tests in vacuum and with cooling system •

D. Paesani **ICHEP 2022**

SENSOR 0 Amplitude (ADC counts)

12

15000

10000

VST with cosmics results overview

- Module-0 w/ final readout chain

- (+1.6 % /°C for SiPM gain)
- iterative algorithm to a level < 5 ps RMS

INFN

Test beam validation

Energy response

- Single particle selection
- MIPs Equalisation & E-scale
- 100 MeV e- beam impinging @ 0° and 50°
- LY/SiPM = 30 pe/MeV
- Great Data-MC agreement

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}[GeV]} \oplus \frac{b}{E[GeV]} \oplus c$$

Time response

- Log-normal fit on leading edge
- 5% CF discrimination
- σ (T1) ~ 130 ps @ Ebeam = 100 MeV

$$\sigma_T = \frac{a}{E[GeV]} \oplus b_1$$

Conclusions

- The Mu2e Calorimeter design was fully validated against \checkmark the harsh operating conditions (B-field, vacuum TID + TNID irradiation)
- \checkmark Successful erformance validation w/ 100 MeV e- TB and cosmics VST
- \checkmark Production of crystals, SiPMs and FEE completed
- Production of mechanics almost completed \checkmark
- Digital electronics in production as scheduled \checkmark
- Downstream calorimter disk assembly in progress at **FNAL**

BOCKUP

Backup

Fermilab

Conclusions

- ✓ The muon conversion experiments (CLFV in general) are excellent tools to look for new physics (BSM)
- ✓ They belong to the Intensity Frontier searches and complementary to searches @ high-energy colliders while exploring a mass scale not directly accessible
- \checkmark The construction of the Mu2e experiment is under way and the commissioning and data taking phase is approaching

17

Main backgrounds...

- **Intrinsic** (scales with µ stopping) ullet
 - Muon decay in obit (DIO)
 - Radiative µ capture (RMC)

- Late arriving from prompt processes (scales with number of late ulletprotons)
 - Radiative π capture $\pi^- N \rightarrow \gamma N', \gamma \rightarrow e^+e^ \pi^- N \rightarrow e^+ e^- N'$
 - μ/π decay in flight
- **Cosmic rays** ullet(1 fake/day)

Michel spectrum of e from μ decay gets significantly modified by interaction with the nucleus \rightarrow presence of a recoil tail with a fastfalling slope close to the μ -e conversion endpoint

D. Paesani

ICHEP 2022

18

□ High intensity pulsed proton beam

- Narrow proton pulses (< ± 125 ns)
- Very few out-of-time protons (extinction < 10⁻¹⁰)
- 3x10⁷ proton/pulse

□ High efficiency in transporting muon to AI target

Need of a sophisticated magnet with gradient fields

Excellent detector for 100 MeV electrons

- \rightarrow Excellent momentum resolution (< 200 keV core)
- \rightarrow Calorimeter for PID, triggering and track seeding
- \rightarrow High Cosmic Ray Veto (CRV) efficiency (>99.99%)
- \rightarrow Thin anti-proton annihilation window(s)

Keys to Mu2e success

Mu2e Predecessors:

Mu2e: Confines soft pions

Concept by Lobashev and Djilkibaev

Sov.J.Nucl.Phys. 49, 384 (1989)

Introduction: SM

but it does / Ge not explain yet: Events

- number of generations
- Pattern of masses
- dark matter / dark energy
- prevalence of matter over antimatter

And it doesn't account for neutrino mixing, which requires massive neutrinos (and which implies) lepton number violation).

There should be physics beyond the SM!

ata-Backgrounc

The Standard Model (SM) represents our better =understanding of particles and forces (besides gravity) and it is very successful at describing a wide range of observations,

Are CLFV processes relevant?

W. Altmannshofer, et al, arXiv:0909.1333 [hep-ph]

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B\rightarrow K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

the given model does not predict sizable effects in that observable.

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star \star$ signals large effects, $\star \star \star$ visible but small effects and \star implies that

Probe SUSY through loops

If SUSY seen at LHC \rightarrow rate ~10⁻¹⁵

Implies O(40) reconstructed signal events with negligible background in Mu2e for many SUSY models.

Complementary with the LHC experiments while providing models' discrimination

D. Paesani - Tor Vergata JC - 12/01/2022

Specific Example: SUSY

SUSY GUT in an SO(10) framework

 $\mu N \rightarrow eN$ (tan $\beta = 10$)

L. Calibbi et al., hep-ph/0605139

25

Littlest Higgs model with T-parity

- Yellow line, limit by SINDRUM-II -
- Grenn lines, MEG and MEG-upgrade
- Mu2e covers all parameter space

MU2E vs MEG-upgrade

Leptoquarks

Red line \rightarrow MEG-upgrade -

Blue line \rightarrow MU2E -

D. Paesani - Tor Vergata JC - $\frac{12}{01/2022}$ $\sqrt{|Y_{\mu\nu}|^2 + |Y_{\nu\mu}|^2}$

Accelerator Scheme

- Booster: batch of 4×10¹² protons every 1/15th second
- Booster "batch" is injected into the Recycler ring
- Batch is re-bunched into 4 bunches
- These are extracted one at a time to the Debuncher/Delivery ring
- As a bunch circulates, protons are • extracted to produce the desired beam structure
- **Produces bunches of ~3x10⁷ protons** • each, separated by 1.7 µs (debuncher ring period)

27

Tracker Design: Thin Straw Tubes - 2

- Proven technology \bullet
- Low mass \rightarrow minimize scattering (track typically sees ~ 0.25 % X_0)
- Modular, connections outside \bullet tracking volume
- Challenge: straw wall \bullet thickness (15 µm)

umber of Straws	23,040
traw Diameter	5 mm
traw Length	430 – 1200 mm, 910 mm average
traw Wall	15 μm Mylar (2×6.25μm plus adhesive)
traw Metallization	500Å aluminum, inner and outer surface 200Å gold overlaid on inner surface
as Volume (straws only)	$4 \cdot 10^8 \text{ mm}^3 (0.4 \text{ m}^3)$
ense wire	25 μm gold-plated tungsten
rift Gas	Ar:CO ₂ , 80:20
as gain	$3-5\cdot10^4$ (exact value to be set later)
etector Length	3196 mm (3051 mm active)
etector Diameter	1620 mm (1400 mm active)

"back on the envelope" resolution

۱ $\sigma_{\underline{p_\perp}}$ $\frac{720}{n+4} \frac{\sigma_y p_\perp}{(0.3BL^2)} \text{ (m, GeV/c, T)}$

1) SPATIAL RESOLUTION CONTRIBUTION

• N(hits) per track = 40, B(Field) = 1 T, L = 0.3 x 2π = 2 m, Sy = 200 μ m

SQRT(720/44) xO (point) x 0.1 / (0.3 x 1 x 4)

 \rightarrow @ 100 MeV \rightarrow 0.06 x 100 keV = 6 keV

2) MULTIPLE SCATTERING CONTRIBUTION

- Sy (m.s.) = L sin0 x Theta_rms =
- Theta_rms =13 MeV/P(MeV) x SQRT(L(X0)) \rightarrow @ 100 MeV and 0.5% X0 \rightarrow Theta rms = 0.13 x SQRT(0.510⁻²) $\rightarrow 0.13 \times 0.07 = 0.09$
- Sy (m.s.) = 0.9 cm 30 times larger than space resolution
- $\sigma(p)/p = 0.06 \times 30 \text{ permil} = 0.002$

$$(P_T example = 100 MeV = 0.1 GeV)$$

 \rightarrow 4 x σ (point) x 0.1 x 0.8 = 0.3 x Sy (m) ~ 60 x 10⁻⁶ = 0.6 x 10⁻⁴ = 0.06 permit

Pattern Recognition based on **BABAR** Kalman Filter algorithm

No significant contribution of mis-reconstructed background

Momentum resolution

core σ ~120 keV tail $\sigma \sim 175 \text{ keV} (2.5\%)$

Tracking Performance

Fit: Crystal Ball + exponential

What is the μ -e conversion ?

µ converts into an electron in the presence of a nucleus

- μ -e process is an example of Charged Lepton Flavor Violating (CLFV) process.
- **CLFV** processes are forbidden in the Standard Model!
 - Assuming neutrino oscillation they are allowed **BUT negligible with BR ~ 10**-50
- Many SM extensions enhance the rates to observable values
- Any observation of a signal will be a clear evidence of New Physics

$$\mu^- N \to e^- N$$

Mu2e measures the rate of μ -e conversion normalized to the μ captures in nuclei:

$$\frac{(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\mu^- + N(A, Z) \to \nu_\mu + N(A, Z - 1))} \le 8 \times 10^{-17} (@ 90\% \text{CL})$$

Mu2e physics reach & goal

Sensitivity reach: **10⁴ improvement with** respect to previous μ to electron conversion **experiment (**Sindrum-II) by means of 4 handles:

- \rightarrow Rate (Intensity)
- \rightarrow Out of Time extinction
- \rightarrow Delayed gate
- \rightarrow Resolution

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \nu_{\mu} + N(A, Z - 1))} \le 8 \times 10^{-17} (@ 90\% \text{CL})$$

LOOP TERM

CONTACT TERM

Summary: CLFV search on Muon Sector

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Mu2e has a broad discovery sensitivity across all models:

- \rightarrow Sensitivity to the same physics of MEG but with better mass reach \rightarrow Sensitivity to physics that MEG is not
- \rightarrow If MEG observes a signal, MU2E does it with improved statistics. Ratio of the BR allows to pin-down physics model
- \rightarrow If MEG does not observe a signal, MU2E has still a reach to do so. In a long run, it can also improve further with PIP-2 at FNAL

Sensitivity to λ (mass scale) up to hundreds of TeV beyond any current

Mu2e sensitivity and rates

Design goal: single-event-sensitivity of 3 x 10⁻¹⁷

- Requires about 10¹⁸ stopped muons (as many muons as the earth's sand grains)
- Requires about 10²⁰ protons on target
- Requires extremely high suppression of backgrounds

• Expected limit: $R_{\mu e} < 8 \times 10^{-17} @ 90\% CL$ Factor 10⁴ improvement

Discovery sensitivity: R_{ue} > 2 x 10⁻¹⁶

Covers broad range of new physics theories

• Determining Z dependence is very important • Lifetime is shorter for high Z -> Decrease in useful search window

Avoid bkg from radiative muon capture

\Rightarrow Aluminum is nominal choice for Mu2e

Nucleus	R _{μe} (Z) / R _{μe} (Al)	Bound lifetime	Atomic Bind. Energy(1s)	Conversion Electron Energy	Prob decay >700 ns
Al(13,27)	1.0	.88 μs	0.47 MeV	104.97 MeV	0.45
Ti(22,~48)	1.7	.328 μs	1.36 MeV	104.18 MeV	0.16
Au(79,~197)	~0.8-1.5	.0726 μs	10.08 MeV	95.56 MeV	negligible

Production and Detector Solenoids

Cosmic Ray Veto (CRV) system

- background rates, access to electronics, and constrai
- Technology: Four layers of extruded polystyrene scintillator counters with

2/7/2021

- Area: 335 m²
- 83 modules; 10 types
- 5,344 counters
- 10,688 fibers
- 19,392 SiPMs
- 4,848 Counter motherboards
- 339 Front-end Boards
- **17 Readout Controllers**

embedded wavelength shifting fibers, read out with SiPM photodetectors.

ulletrate of ~1 per day

-1500

Cosmic ray muons and interaction products can fake conversion electrons at a

CRV Construction status

- Prototype tested in Fermilab test beam: LY meets specifications
- SiPMs,FEE produced
- more than half di-counters produced
- more than 30% of modules completed and tested

Large scale prototype: Module-0

- 51 crystals
- Dual readout
- Final Mu2e SiPM readout
- Cooling system
- Laser calibration system

		M00 204 204	036 14 18										
	M0 21 21	029 01 05	M0 20 20	030 93 98	M0 20 21	031 97 04	M0 20 20	033 53 49	M00 20 20)334 45 50			
Ν	M0023 1746 1747	M00 178 107)24 32 72	H7 46 46	(v4) 25 33	H6 40 33	(v4) 57 33	M0 20 20	027 91 95	M0 20 20	028 194 196		
M0015 2372 2371	M0 23 23	016 21 14	M0 23 23	017 17 18	H13 7(75	(v4) 53 97	M0 23 23	019 26 25	M0 17 17	021 85 90	M00 178 232	22 8 7	
M	M0008 2149 2150	M00 215 214	009 52 48	M0 21 21	010 51 47	M0 23 23	011 16 15	M0 23 23	013 22 23	M0 23 23	014 874 873		
	M0 21 21	003 57 20	M0 21 21	004 19 17	M0 21 21	005 18 95	M0 21 21	006 55 53	M0 21 21	007 54 58			
		M00 21! 210	001 59 50	M0 23 23	012 19 24	M0 21 23	020 46 75	M0 21 21	002 11 56				

- Booster: batch of 4×10¹² protons every 1/15th second
- Booster "batch" is injected into the Recycler ring
- Batch is re-bunched into 4 bunches
- These are extracted one at a time to the Debuncher/Delivery ring
- As a bunch circulates, protons are • extracted to produce the desired beam structure
- **Produces bunches of ~3x10⁷ protons** • each, separated by 1.7 µs (debuncher ring period)

Muon Campus

500 - 1695 ns window

The speed and efficiency of tracker reconstruction is improved by selecting tracker hits compatible with the time ($|\Delta T| < 50$ ns) and azimuthal angle of Calorimeter clusters \rightarrow simpler pattern recognition

Calorimeter – track seeding idea

x [mm]

D. Paesani - Tor Vergata JC - 12/01/2022

no

- Muon-to-electron conversion is a charged lepton flavor violating process (CLFV) similar but complementary to other CLFV processes as $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3 e$.
- $\mu \rightarrow e\gamma$ is a CLFV decay searched @ PSI by the MEG (and now MEG-upgrade) lacksquareexperiment. It is leading the research in this field.
- Also $\mu \rightarrow 3e$ is an experiment proposed @ PSI. It will be carried out in two phases with different reaches in sensitivity $(10^{-15}, 10^{-16})$
- The Mu2e experiment @ FNAL (along with COMET in Japan) searches for \bullet muon-to-electron conversion in the coulomb field of a nucleus: $\mu A \to e^A$

D. Paesani - Tor Vergata JC - 12/01/2022

CLFV in the muon sector

Various NP models allow for it, at levels just beyond current CLFV upper limits. SO(10) SUSY L. Calibbi et al., Phys. Rev. D 74, 116002 (2006); L. Calibbi et al., JHEP 1211, 40 (2012). Scalar leptoquarks J.M. Arnold et al., Phys. Rev D 88, 035009 (2013). Left-right symmetric model C.-H. Lee et al., Phys. ReV D 88, 093010 (2013).

CLFV history

CLFV in the muon sector

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Mu2e has a broad discovery sensitivity across all models:

- \rightarrow Sensitivity to the same physics of MEG but with better mass reach
- \rightarrow Sensitivity to physics that MEG is not
- \rightarrow If MEG observes a signal, MU2E does it with improved statistics. Ratio of the BR allows to pin-down physics model
- \rightarrow If MEG does not observe a signal, MU2E has still a reach to do so. In a long run, it can also improve further with PIP-2 at FNAL

• Sensitivity to λ (mass scale) up to hundreds of TeV beyond any current

Normalization

D. Paesani - Tor Vergata JC - 12/01/2022

ι₀

(N. Tran)

Production target detail

Production solenoid

Protons enter opposite to outgoing muons: This is a central idea to remove prompt background

occasional μ + Beam selection by: • curvature drift collimators • momentum

Transport solenoid

Solenoids...

5

Probability of	
rolling a 7 with two dice	1.67E-0
rolling a 12 with two dice	2.78E-0
getting 10 heads in a row flipping a coin	9.77E-0
drawing a royal flush (no wild cards)	1.54E-0
getting struck by lightning in one year in the US	2.00E-0
winning Pick-5	5.41E-0
winning MEGA-millions lottery (5 numbers+megaball)	3.86E-0
your house getting hit by a meteorite this year	2.28E-1
drawing two royal flushes in a row (fresh decks)	2.37E-1
your house getting hit by a meteorite today	6.24E-1
getting 53 heads in a row flipping a coin	1.11E-1
your house getting hit by a meteorite AND you being	
struck by lightning both within the next six months	1.14E-1
your house getting hit by a meteorite AND you being	
struck by lightning both within the next three months	2.85E-1

Some perspective...

~90% C.L. goal

Single event sensitivity of Mu2e

Graded field "reflects" downstream a fraction of conversion electrons emitted upstream

34 Al foils; Aluminum selected mainly for the muon lifetime in capture events (864 ns) that matches nicely the prompt separation in the Mu2e beam structure.

For the sensitivity goal \rightarrow ~ 6 x 10¹⁷ stopped muons

Detector solenoid

For 3 year run, 6 x 10⁷ sec \rightarrow 10¹⁰ stopped muon/sec (10 GHz)

Tracking patterns

D. Paesani - Tor Vergata JC - 12/01/2022

reconstructable tracks

beam's-eye view of the tracker

- Panels are produced at U. Minnesota
 - All straw manufactured
 - >50% of the panels processed
- Work ongoing to prepare a vertical slice test on a full plane

Tracker readiness

SiPM qualification and QC

Mu₂e SIPM

- 6 individual 6x6 mm² 50 µm px MPPCs (Hamamatsu)
- UV-extended design matches the CsI 315 nm emission peak (silicone protection layer)
- 30 % PDE @ 300 nm

INFN

TNID qualification

- Neutron irradiation tests @ ENEA-FNG and HZDR
- Required gain drop < 2 after irradiation
- Allowable I_{dark} increase \rightarrow 2 mA/SiPM limit on FEE linear regulator
- ROU cooling from 0 to -10° C to extend SiPM operation (I_{dark} halves every 10 °C reduction)

QC steps

- V_{br}, I_{dark}, gain*PDE measured for each cell
- 5 SiPM/batch underwent $10^{12} n_{1MeV}/cm^2$ irradiation test
- QC on all production SiPMs completed in late 2019
- 2% of out-of-spec components

Other requirements

- gain > 10⁶ @ $V_{ov} = 3 V$
- recovery time < 100 ns @ 15 ohm
- Good V_{bd} and I_{dark} matching over 6 cells
- MTTF > 10⁶ h @ 20 °C
- Low thermal resistance

Mu2e beam structure

- Proton bunch \rightarrow FW ~ 200 ns pulse
- 20,000 muons per bunch ($10^{10} \mu$ /second)
- μ reach the stopping target in ~250 ns
- Stopped µ lifetime in 1S Al ~864 ns

INFN

• **Prompt bkg** \rightarrow protons, unstopped muons, stopped and unstopped pions • Late protons noise \rightarrow 10¹⁰ beam extinction needed • Pions from late $p \rightarrow RPC$ prompt bkg ($t_{pi}^{AI} = 26$ ns) • Mainly **DIO** and **CR** background during observation window

Beam's eye view

Cluster seeding idea

500 - 1695 ns window

The speed and efficiency of tracker reconstruction is improved by selecting tracker hits compatible with the time ($|\Delta T| < 50$ ns) and azimuthal angle of Calorimeter clusters \rightarrow simpler pattern recognition

D. Paesani ICHEP 2022

Full simulation for signal extraction

INFN

typical SUSY at 10⁻¹⁵: 40 events vs 0.4 backgrounds

Procurement of Crystals and SiPMs

Production of 1500 Csl crystals and 4000 Mu2e SiPMs started in 2018 ²²Na QA test at SIDET (FNAL) + irradiation tests at Caltech, HZDR, FNG, Calliope

Crystals

- Two producers (SICCAS, St. Gobain)
- QA of optical (LY, LRU, F/T, RIN) and mechanical dimensions
 - ✓ St.Gobain failed to match our specs.
 - Final production back to SICCAS
- OK with irradiation tests
- ~8 % had specification failure

Completed end of 2020

SiPMs

- Producer: HAMAMATSU
- 6 individual 6x6 mm² 50 µm px MPPCs (Hamamatsu) paralleled series $(2/3 C_i)$
- All 6 cells/SiPM tested, measuring
 - V_{br}, I_{dark}, Gain x PDE
- Irradiation with ~1x10¹² neutrons/cm² and (MTTF) test on 5 SiPMs/batch

Completed in 2019 25/05/22

100

80

60

40

20

0 60

80

100 120

F. Happacher Pisa Meeting 2022

0.95 Fast/Total

220

Energy

0.08

0.22

0.2

45 50

dark [%]

