Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions

The BDX experiment at Jefferson Laboratory

Andrea Celentano, for the BDX collaboration

INFN-Genova

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
000	00000	0000	0
Outline			

2 The BDX experiment at JLab

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
●00	00000	0000	O
Light dark matter			

The light dark matter hypothesis predicts that DM is made by sub-GeV particles interacting with SM via a new force.¹

Simplest possibility: "vector-portal". DM-SM interaction trough a new U(1) gauge-boson ("dark-photon") coupling to electric charge

Model parameters:

- Dark-photon mass, $M_{A'}$ and coupling to electric charge ε
- Dark matter mass, M_{χ} and coupling to dark photon, $g_D~(\alpha_D\equiv g_D^2/4\pi)$

¹For a comprehensive review: 1707.04591, 2005.01515, 2011.02157

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
0●0	00000	0000	O
Light dark matter	searches at the intensity front	ier	

- Dark Matter direct detection experiments, typically optimized for $M_\chi \ge 1$ GeV, have a limited sensitivity in the sub-GeV range
 - $E_R \propto M_\chi^2/M_N$
 - Many ongoing efforts to overcome this limitation
- LDM-SM interaction cross section at low energy has a sizable dependence on the impinging particle velocity, with a drastic reduction for specific models

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
000		0000	O
Light dark mat	ter searches at the intensity front	tier	

- Dark Matter direct detection experiments, typically optimized for $M_\chi \ge 1$ GeV, have a limited sensitivity in the sub-GeV range
 - $E_R \propto M_\chi^2/M_N$
 - Many ongoing efforts to overcome this limitation
- LDM-SM interaction cross section at low energy has a sizable dependence on the impinging particle velocity, with a drastic reduction for specific models

LDM at accelerators

Accelerator-based experiments at the *intensity frontier* are uniquely suited to explore the light dark matter hypothesis

Beam dump experiments: LDM direct detection in a e^- beam, fixed-target setup² χ production

- High-energy, high-intensity e^- beam impinging on a dump
- χ particles production: radiative A' emission (both on-shell or off-shell) / e^+e^- annihilation

χ detection

- Detector placed behind the dump, O(10-100) m
- Neutral-current χ scattering trough A' exchange, recoil releasing visible energy
- Different signals depending on the interaction (BDX channel: χe^- elastic scattering)

Number of signal events scales as $S \propto rac{lpha_D arepsilon^4}{m_A^4}$

Introduction The BDX experiment at JLab BDX-MINI Conclusions

BDX: Beam Dump eXperiment at Jefferson Laboratory

Experimental setup

- 11 GeV, 100 μ A CEBAF e^- beam impinging on the Hall-A beam dump
- Detector installed 20 m downstream, in a new experimental hall
- Passive shielding layer between beam dump and detector to shield beam-related background (except ν)
- Sizable overburden ($\simeq 10~m$ water-equivalent) to reduce cosmogenic background

The experiment is designed with two goals:

Producing and detecting LDM	Reducing background
 High-intensity e⁻ beam, ≈ 10²² electrons-on-target (EOT)/year Medium-high energy, >10 GeV ≈ 1 m³ (1-5 tons) detector EM-showers detection capability 	 Passive shielding between beam dump and detector to filter beam-related backgrounds (except ν) Passive shielding and active vetos surrounding the active volume to reject cosmogenic backgrounds Segmented detector for background discrimination based on event topology Good time resolution to perform detector-veto coincidence

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
000	00●00	0000	0
The BDX detector			

Detector design: 800 CsI(TI) crystals, total interaction volume $\simeq 0.5m^3$.

Modular detector arrangement:

- 1 module: 10x10 30-cm long crystals, module front face: 50x50 cm²
- Crystals are surrounded by a 1-cm thick W shielding layer and by two plastic scintillator active veto layers (IV / OV)
- 8 modules, total interaction length 2.6 m

Signal detection:

- EM-shower, $E_{thr} \simeq 300$ MeV, anti-coincidence with IV and OV
- Signal efficiency (conservative) $\simeq 10\%$ ongoing studies to exploit EM shower directionality to improve this.

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
000	000●0	0000	O
BDX backgrounds			

Cosmogenic: data-driven estimate

- μ: rejected by IV/OV. Neutrons: absorbed by the overburden.
- Result extrapolated from cosmic-ray data acquired with a small-scale BDX prototype installed at INFN-LNS (similar overburden).
 - $E_{thr} = 300$ MeV: $B_c \simeq 5$ (1 year).

Beam-related: yield estimate through MC simulations (FLUKA+Geant4+GENIE)

- ν -induced background from ν_e CC interactions in the detector, with a high-energy e^{\pm} resulting to an EM shower. $B_{\nu} \simeq 10$ for 10^{22} EOT.
- All other SM particles are absorbed by 6.6 m of iron + 2 m concrete shielding.

PDV concitivity	and auranimaant status		
000	00000	0000	0
Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions

BDX sensitivity and experiment status

With 10^{22} EOT (1-year running time), BDX will be capable of exploring a large area of the LDM parameters space

BDX status:

- Full proposal presented to JLab PAC46 (2018), approved with the highest scientific rating
- Currently negotiating with laboratory management to build the new experimental hall

The BDX MIN	experiment		
000	00000	0000	O
Introduction	The BDY experiment at II ab	BDX-MINI	Conclusions

Small-scale, low-energy version of the full BDX experiment.

Experimental setup

- 2.2 GeV, 150 μ A e^- beam impinging on Hall-A beam dump
- SM particles shielded by concrete and soil
- Detector installed in a well 25-m downstream

- PbWO₄-based EM calorimeter (44 crystals), SiPM readout
- 8 mm passive Tunsgten shielding
- 2 plastic scintillator active veto layers, SiPM readout

Data-taking

December 2019: 11 GeV calibration sample 2020: $2.54\cdot 10^{21}$ 2.184 GeV EOT

 Introduction
 The BDX experiment at JLab
 BDX-MINI
 Conclusions

 ooo
 oooo
 oooo
 o

EM calorimeter energy response

- Energy calibration determined from 11 GeV data exploiting secondary μ from beam dump: compare energy spectra between data and MC
- Detector stability monitored with cosmic muons during beam-off time

VETO stability

 VETO efficiency monitored with cosmic muons, using a *tag-and-probe* method. Trajectories selected via ECAL crystals energy deposition.

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
000	00000	००●०	O
BDX-mini data analy	rsis		

Approach: blind-analysis. Fix the selection cuts by optimizing the experiment sensitivity. Model: ON-OFF problem, described by

 $\mathcal{L} = P(n_{on}, S + B_{\nu} + B_c) \cdot P(n_{off}, \tau \cdot B_c)$

- n_{on} , n_{off} : measured number of events during beam-on/beam-off intervals ($\tau = T_{off}/T_{on}$).
- B_c/B_{ν} : expected number of cosmogenic/beam-related backgrounds events. B_{ν} evaluated via MC, B_c threated as nuisance parameter.

Extract the upper limit on ${\cal S}$ through a a one-sided profile-likelihood test statistics.

BDX mini results			
Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions

The signal window optimizing the BDX-mini sensitivity is defined by $E_{thr} = 40$ MeV. No further cuts are applied.

Introduction	The BDX experiment at JLab	BDX-MINI	Conclusions
000	00000	0000	•
Conclusions			

- Dark matter in the MeV-to-GeV range is largely unexplored.
- Beam Dump eXperiment at JLab: search for Dark Sector particles in the 1 ÷ 1000 MeV mass range.
 - High intensity (= 10^{22} EOT/year), high energy (11 GeV) e^- beam
 - Detector: $\simeq 800 \text{ Csl}(\text{Tl})$ calorimeter + 2-layers active veto + shielding.
- BDX was approved by JLAB PAC with the highest scientific rating, currently discussing with laboratory to define a strategy to build the new experimental Hall
- BDX-MINI pilot experiment:
 - Small-scale version of the full-BDX effort, including all the key components
 - Measurement campaign with 2.184 GeV beam completed in 2020, data analysis in progress