

Virtual QCD Corrections to gg->ZH via a Transverse-Momentum Expansion

L. Alasfar^a, L. Bellafronte^b, G. Degrassi^{c,d}, P. P. Giardino^b, R. Gröber^e and M. Vitti^c (a)Humboldt U., Berlin; (b)Santiago de Compostela U., IGFAE; (c)Roma Tre U. & INFN, Roma Tre; (d)CERN, Theoretical Physics Department; (e)Padua U. & INFN, Padua

1. Introduction

Associated VH production (V=W,Z) is the most sensitive channel for the measurement of H \rightarrow bb decay at the LHC

Two partonic channels contribute to this process:

1) **qq-channel**: both WH and ZH Main contribution to the total cross section

2) **gg-channel**: only ZH About 6% of the total cross section

Larger theoretical uncertainties in ZH production, as the gluoninitiated channel is known only at leading order (LO) \longrightarrow It is important to study gg \rightarrow ZH at NLO in QCD

Th. Unc. for (ZH, $Z \rightarrow II$) [1]

\sqrt{s} [GeV]	σ [fb]	$\Delta_{\rm scale} [\%]$	$\Delta_{\rm PDF/\alpha_s/PDF\oplus\alpha_s}[\%]$,	\sqrt{s} [GeV]	σ [fb]	$\Delta_{\rm scale}[\%]$	$\Delta_{\mathrm{PDF}/\alpha_{\mathrm{s}}/\mathrm{PDF}\oplus\alpha_{\mathrm{s}}}[\%]$
7	23.04	$^{+0.6}_{-0.8}$	$\pm 2.2/\pm 0.6/\pm 2.3$		7	11.43	$^{+2.6}_{-2.4}$	$\pm 1.6/\pm 0.7/\pm 1.7$
8	28.62	$^{+0.6}_{-0.8}$	$\pm 2.1/\pm 0.6/\pm 2.1$		8	14.18	$^{+2.9}_{-2.4}$	$\pm 1.5/\pm 0.8/\pm 1.7$
13	59.83	$^{+0.4}_{-0.7}$	$\pm 1.8/\pm 0.8/\pm 2.0$		13	29.82	$^{+3.8}_{-3.1}$	$\pm 1.3/\pm 0.9/\pm 1.6$
14	66.49	$^{+0.5}_{-0.6}$	$\pm 1.7/\pm 0.9/\pm 1.9$		14	33.27	$^{+3.8}_{-3.3}$	$\pm 1.3/\pm 1.0/\pm 1.6$

2. The gg \rightarrow ZH process

• LO contribution: one-loop diagrams (mainly top loops)

• NLO virtual QCD corrections: two-loop diagrams, some of them known fully analytically

g leeer

9 0000

• Main challenge at NLO: calculation of two-loop box integrals

No analytic result currently available —

3. The pT Expansion

- 1) Amplitude expressed using 6 form factors
- 2) In the limit $\text{pT} \rightarrow 0,$ form factors are Taylor-expanded in the parameters

 $rac{m_H^2}{\hat{s}}, rac{m_Z^2}{\hat{s}}, rac{p_T^2}{\hat{s}} \ll 1 \qquad rac{p_T^2}{4m_t^2} \ll 1$

After integration-by-parts reduction
 the structure of the resulting integrals is simplified

 $I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \longrightarrow I(\hat{s}/m_t^2)$

- Final result depends on 52 master integrals
- NLO checked with exact numerical evaluation [2]
- Accuracy below 1% for pT \lesssim 350 GeV
- Allows to cover ~ 98% of hadronic cross section
- Inaccurate results for the high-energy tail

Fig.1: NLO QCD virtual corrections for various orders of the pT expansion. Other analytic approximations shown for comparison. See [3]

5. Conclusions

- Fast and flexible analytic approximation of virtual corrections
- Accuracy below 1% over whole phase space
- Results recently used for the calculation of the complete (virtual+real) NLO corrections to $gg \rightarrow ZH$ [6]

4. Combination with High-Energy Expansion

- Approximation accurate in high-energy tail available in literature [4]
- The pT and HE expansion are accurate in almost complementary phase-space regions

Use approximation

Fig.2: Validity regions for the pT and HE expansions vs. LO partonic cross section

- Padé approximants used to improve convergence of both expansions
- Padé-improved results merged in single prediction [5]
- Complete phase-space coverage

Fig.3: Comparison of pT and HE expansions (solid lines) vs. Padé-improved results (dashed lines)

References

- [1] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., arXiv:1610.07922
 [2] L. Chen, G. Heinrich, S. P. Jones, M. Kerner, J. Klappert, and J. Schlenk,
- JHEP03(2021) 125, arXiv:2011.12325
- [3] L. Alasfar, G. Degrassi, P. P. Giardino, R. Gröber, and M. Vitti, JHEP05(2021) 168, arXiv:2103.06225
- [4] J. Davies, G. Mishima, and M. Steinhauser, JHEP03(2021) 034, arXiv:2011.12314
- [5] L. Bellafronte, G. Degrassi, P. P. Giardino, R. Gröber, and M. Vitti, arXiv:2202.12157
- [6] G. Degrassi, R. Gröber, M. Vitti and X. Zhao, arXiv:2205.02769