

Constraints on Higgs boson production with large transverse momentum using $H \rightarrow bb$ decays in the ATLAS detector

Published in *Phys. Rev. D 105, 092003*

Introduction

- Probe **Higgs** boson production at **high** p_T - constrain cross-section
- High- p_T topology contains energetic recoil jet(s)
- Higgs decay products clustered inside large-radius calorimeter jet

Motivations

- Probe **unexplored** region $p_T^H > 1$ **TeV**
- New physics in ggF loop? Potential cross-section enhancement at high p_T
- New resonances at EW mass scale?

others - *H* 58%

The $b\overline{b}$ Final State

- Issue: low statistics at high p_T
- Use $b\overline{b}$ final state highest BR
- Drawback: large QCD multijet background

Recoil Jet

- No requirement on nature of recoil jet(s)
- Analysis inclusive in Higgs production mode: ggF, VBF, VH, ttH
- ggF dominant contribution (55% inclusively)
- Access to potential R cross-section enhancements

Event Selection

- Large-R jet trigger, $p_T > 450$ GeV, $m > 60 \, \text{GeV}$
- At least 1 additional jet, $p_T > 200$ GeV

Higgs Candidate Jet:

- $p_T > 250$ GeV, m > 60 GeV, $|\eta| < 2$
 - Boosted: $2m/p_T < 1$
 - 2 variable radius track jets

Event Classification

Signal (SR) and validation (VR) regions based on **b-tagging** of **Higgs candidate**

Regions split further into p_T bins for differential measurement

Signal and **Background Modelling**

Higgs, $t\bar{t}$ and V+jets modelled with MC

anti-kt

QCD Multijet:

- Largest background
- Modelled with polynomial
 - Optimised on kinematically corrected and statistically equivalent VR datasets

Recoil Jet

- Constrained with control region ($CR_{t\bar{t}}$) data
- Targets semi-leptonic tt decays

Result Split SRL, SRS and $CR_{t\bar{t}}$ into candidate jet p_T regions

 $p_T > 1$ TeV

H, p_τ (μ=18)

Differential

- In each region, Higgs split in truth p_T^H templates
- Simultaneous fit to all regions
- Higgs signal strengths correlated among regions

- Results are statistically limited

Inclusive Result

- Maximum likelihood fit to candidate jet mass
- Simultaneous fit to SRL, SRS and $CR_{t\bar{t}}$
- Higgs signal strength (μ_H) consistent with SM

Result	μ_H
Expected	1.0 ± 3.2
Observed	0.8 ± 3.2

Future Prospects

 $\mu_H^{p_T^H} > 1 \text{ TeV}$

ATLAS

0.4

Data

Data-bkg

 \sqrt{s} = 13 TeV, 136 fb⁻¹

 $-SRL, p_{\scriptscriptstyle \perp} > 1 \, TeV$

• Use more advanced neural-network based b-tagger

Jet mass [GeV]

- Purify signal selection using jet substructure
- New physics interpretation

140

160

120