

Fábio Lucio Alves (Nanjing University) on behalf of the ATLAS experiment ICHEP2022, Bologna(IT),6-13 July 2022

Higgs boson decay in diphoton channel at ATLAS

- Signature: two reconstructed isolated photons
- Narrow peak over smoothly falling background (excellent photon energy resolution)
- Diphoton vertex requirement:
 - ▶ Neural Network algorithm takes as input information from tracks, primary vertex and directions of the photons
 - ▶ benefits the mass resolution (~11% improvement for inclusive case)
- Main backgrounds:
 - continuum $\gamma\gamma$ production (reducible), γjet and jetjet (irreducible)

Inclusive and Differential Fiducial Measurements

- Test the SM Higgs boson properties and probe for BSM contributions
- Fiducial region: closely match the detector-level analysis and object selections
 - subset regions of the inclusive fiducial region sensitive to different Higgs boson production modes are measured
- Differential measurements in 1D and 2D observables
 - signal yield extracted from data
 - binning choice: >= 2sigma significance
 - correct to detector inefficiencies (MC response matrix)

Interpretation of Differential Measurements

- $p_T^{\gamma\gamma}$ (p-value compatibility to SM = 86%) is sensitive:
 - ▶ low pT region to b- and c-quarks couplings
- high pT region to top quark coupling and BSM effects • $|y^{\gamma\gamma}|$ (p-value compatibility to SM = 76%) is sensitive to the PDF of protons

- N_{jets} (p-value compatibility to SM = 95%):
 - sensitive to different Higgs boson production modes
- Additional observables are measured in 1D and 2D differential distributions

- Limits on κ_c and κ_b are set from a profile likelihood method:
 - ullet most sensitive region of $p_T^{\gamma\gamma}$ spectrum < 200 GeV
 - Stronger constraints from shape+normalization
- Shape+normalization constrain on κ_b is comparable to direct searches while κ_c provides stronger constraints (a factor of 3 more stringent for the observed result and a factor of 4 for the expected result)

All measurements in good agreement with the SM

