# Search for Resonant and Non-Resonant VHH Production

- Presenter: Nicholas Kyriacou on behalf of ATLAS Collaboration
- Institute: University of Michigan
- Presenter contact: nkyriaco@umich.edu

## **Vhh** Introduction

- Vhh is a very rare process in the SM, with a **production** cross-section at 13 TeV of < 1 fb.
  - First analysis targeting Vhh final-state!
  - Sets initial Vhh cross-sections limits with full Run-2 (139  $fb^{-1}$ ) dataset!
  - Although a small expected cross-section: the corresponding SM background is low, and a clean-final state can be achieved with  $V \rightarrow$  leptonically, enhances potential to discover new physics!





Published CONF: ATLAS-CONF-2022-043

#### Observed & (expected) 95% CLinterval constraints on hhh and hhVV couplings (expected): -34.4 (-24.1) < $K_{\lambda}$ < 33.3 (22.9) -8.6 (-5.7) < $K_{2V}$ < 10.0 (7.1) An observed upper cross section limit of 183 times the Standard

UNIVERSITY OF MICHIGAN

At LO, 3 different Standard Model (SM) Feynman diagrams can produce this final state.

Analysis also targets two resonant signal searches!

- Heavy Narrow Resonance  $(V \rightarrow lep. H \rightarrow hh \rightarrow b\overline{b}b\overline{b})$  (left)
- Heavy Pseudo-scalar AZH Resonance (A  $\rightarrow$  ZH w/ Z  $\rightarrow ll/vv \& H \rightarrow hh \rightarrow b\overline{b}b\overline{b}$ ) (right)



### **Event Selection**

Targets final-state with V decaying leptonically and Higgs boson decaying to a pair of b quarks.

- Different lepton and  $E_T^{miss}$  requirements depending on the channel.
- Two main backgrounds (tt, V+jets), constrained by dedicated tt & V+jets Control Region (CR).
- Remaining backgrounds are minor (<10%), and contributions are normalized to  $\sigma_{\text{Theory}}$ .

|         | Signal regions                   |                    |                   | Control regions          |                 |
|---------|----------------------------------|--------------------|-------------------|--------------------------|-----------------|
|         | 0L                               | 1L (1L+/1L-)       | 2L                | tī                       | V+ jets         |
| Trigger | $E_{\mathrm{T}}^{\mathrm{miss}}$ | single-lepton      | single-lepton     | single-lepton            | single-photon   |
| Lastas  | 0 La sea lontona                 | = 1 tight electron | = 2 loose leptons | = 2 <i>loose</i> leptons | = 1 photon with |

BDT Bin

## **VH Limits**

Vhh Non-Resonant Search



Model, compared with an expected limit of  $87^{+41}_{-24}$  is set. *The weaker observed bounds compared with expectations are largely due to small excesses of data in the highest BDT bins* 



- 7 Common input variables used across all 8 BDT's:
  - $(m_{h_1} m_2)$ ,  $(m_{h_1} + m_{h_2})$ ,  $N_{jets}$ ,  $\Sigma_{PC}$ ,  $H_T^{Ex}$ ,  $m_{h_1}^{FSR}$ ,  $m_{h_2}^{FSR}$

Example (1L) kinematic distribution of  $m_{h_1} - m_{h_2}$  variable used in BDT training.

Simultaneous binned maximum likelihood fit for each signal model

50

40

20

1.25

0.75

0.5 \_\_\_\_\_200

-150

-100

-50

Data / Bkg.

- Control Regions: Sum of the pseudo-continuous b-tagging scores distributions are fit to extract background.
- Signal Regions: output BDT distributions are fit to extract signal contribution.

•••• WH→Whh

m<sub>н</sub> = 400 GeV

Observed (solid black curve) and expected (black dashed curve) 95% CL upper limits on production cross section for WH(*hh*) (left) and ZH(*hh*) (right)

Slight excess observed in WH(hh) fits (left) at  $m_H$  = 315 GeV: local significance 2.5 with corresponding global significance 1.3.

Slight excess observed in ZH(hh) fits (**right**) at  $m_{\rm H}$  = 550 GeV: local significance 2.7 with corresponding global significance 1.3.

## $A \rightarrow ZH Search$



• Resonant analysis: Applies mass window cuts prior to fitting BDT distributions.

m<sub>h1</sub>-m<sub>h2</sub> [GeV]

• Resonant analysis: Uses a linear interpolation between simulated mass points.



Highest obs. excess in NW A $\rightarrow$ ZH (**left**) fits at (m<sub>A</sub>, m<sub>H</sub>) = (420,320) GeV: local sig. 3.8 w/ corr. global sig. 2.8.

Highest obs. excess in LW A $\rightarrow$ ZH (**not shown**) fits at  $(m_A, m_H) = (800,300)$  GeV: local sig. 3.6 w/ corr. global sig. 1.6.

Type-1 2HDM upper limit interpretations on  $\sigma(A)$ xBr(A $\rightarrow$ ZH $\rightarrow$ Zh $\rightarrow$ Zbbbb). Shaded areas are 95% CL exclusion contours in cos( $\beta - \alpha$ ) -  $m_A$  plane for tan( $\beta$ ) = 1.0 &  $m_H$  = 350 GeV.

Background-only post-fit distributions of the sumer of the pseudo-continuous btagging scores of the four highest-score jets in the V+jets (left) and  $t\bar{t}$  (right) CR's.