

• Installation of upgraded detectors planned to take place between 2026 and 2028

Source	$\operatorname{Component}$	Run 2 Uncertainty	Projection minimum uncertainty
Muon ID		1-2%	0.5%
Electron ID		1-2%	0.5%
Photon ID		0.5- $2%$	0.25-1 $%$
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1- $0.2%$
	Relative	$0.1 ext{-}3\%$	$0.1 ext{-} 0.5\%$
	Pileup	$0 extsf{-}2\%$	Same as Run 2
	Method and sample	$0.5 extsf{-}5\%$	$\operatorname{No}\operatorname{limit}$
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	$\operatorname{No}\operatorname{limit}$
Jet energy res.		Varies with p_{T} and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets(syst.)	Varies with p_{T} and η	Same as Run 2
	light mis-tag(syst.)	Varies with p_{T} and η	Same as Run 2
	b-/c-jets(stat)	Varies with p_{T} and η	$\operatorname{No}\operatorname{limit}$
	light mis -tag $(stat)$	Varies with p_{T} and η	$\operatorname{No}\operatorname{limit}$
Integrated lumi.	- , , ,	2.5%	1%

Higgs Pair Production

coverage ~ 3

• Higgs self-coupling probes the nature of the Higgs potential

$$V(H) = \frac{1}{2}m_H^2 H^2 + \frac{\lambda_3}{2}\nu H^3 + \frac{1}{4}\lambda_4 H^4$$

• λ_3 probed directly via HH production

90E

70 b

60

100

CMS Phase-2 Simulation Preliminary

120

110

130

140

Cat. 4

pp→HH→W(qq)W(h⁄) γγ

YR '18 Summary

3000 fb⁻¹ (14TeV)

- Continuum Bkg.

— Signal x 10

+ Pseudo-data

Di-photon Invariant mass [GeV]

- Signal + Full Bkg.

Channel	Significance Stat. + syst. Stat. only		95% CL limit on $\sigma_{\rm HH} / \sigma_{\rm HH}^{\rm SM}$ Stat. + syst. Stat. only	
bbbb	0.95	1.2	2.1	1.6
bb au au	1.4	1.6	1.4	1.3
bbWW($\ell \nu \ell \nu$)	0.56	0.59	3.5	3.3
$bb\gamma\gamma$	1.8	1.8	1.1	1.1
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5
Combination	2.6	2.8	0.77	0.71

(HGCAL)

- Addition of VBF-HH categories and hence tagger BDTs for ggHH and VBF-HH
- Improved photon and b-jet identification
- Overall, ~%20 improvement
- Signal extraction: 2D fit in $m_{\gamma\gamma}$ and
- m_{bb}
- BDT as the discriminant

• First study of HL-LHC projection of these two channels • Signal extraction: 1D fit in $m_{\gamma\gamma}$ • DNN as the discriminant • Signal definition (ggHH only): • $ww\gamma\gamma$ (FL+SL) + $\tau\tau\gamma\gamma$ • Explored in four final states: • Targeting decays of W in 1 Lepton and 2 Lepton final states (L= e^{\pm} or μ^{\pm}) • 1τ and 2τ final states for $\tau\tau\gamma\gamma$

• Endcap Calorimeter

High Granularity Calorimeter

• Expected upper limit • $\sigma(ttHH) < 3.14 \times SM$

The nonresonant ttHH production in the semileptonic decay of the top pair and the Higgs pair decay into b quarks

110

0.59 bbWW($\ell \nu \ell \nu$) 0.56 2.16 *o* 1.8 1.8 $bb\gamma\gamma$ $bbZZ(\ell\ell\ell\ell)$ 0.37 0.37 $WW\gamma\gamma + \tau\tau\gamma\gamma$ 0.22σ

• Snowmass studies have improved YR18 projections via new analysis techniques, new production (VBFHH, ttHH) and decay channels ($WW\gamma\gamma,\tau\tau\gamma\gamma$)

• Next step is the combination of these updated results with ATLAS - soon to be done for SNOWMASS report

• Once we study the HH with HL-LHC data, we are optimistic that we will be able to observe Higgs self-coupling!

References

[1] CMS Collaboration, "Snowmass White Paper Contribution: Physics with the Phase-2 ATLAS and CMS Detectors , CMS PAS FTR-22-001 [2] E.M. Cepeda et al., "Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC",

Technical Report, CERN, 2019

[3] M. Gouzevitch, A. Carvalho, "A review of Higgs boson pair production", Rev.Phys. 5,2020

Scan for the

White Paper

suat.donertas@uclouvain.be

izzeddin.suat.donertas@cern.ch

• Provides sensitivity to BSM models

International Conference on High Energy Physics 2022, Bologna, Italy