

Search for non-resonant Higgs Boson pairs production in the $bb\tau\tau$ final state

Davide Zuolo

INFN Milano - Bicocca

On behalf of the CMS Collaboration

138 fb⁻¹ (13 TeV)

The measurement of σ_{HH} is the best way to extract the Higgs self-coupling λ_{HHH}

The production cross section of the single Higgs processes also depends on λ_{HHH} , as a result of NLO electroweak corrections

Shape of the Higgs potential defined by m_H (measured with high precision) and the vacuum expectation value (v, calculated with high precision) \rightarrow need experimental measurement of λ_{HHH} to test model prediction: $\lambda_{HHH} = \frac{m_{\tilde{H}}}{2v^2}$

Gluon-Gluon Fusion (GGF): Destructive interference between the two diagrams leads to a small cross section (31.05 fb)

Vector Boson Fusion (VBF): Second most frequent process (cross section 1.726 fb) Unique handle to probe VVHH coupling (C_{2V})

$HH \rightarrow bb\tau\tau$

- 1. Good trade-off between BR (bb) and signal purity $(\tau\tau)$
- 2. $H \rightarrow bb$: highest BR (54%), efficient DNN-based b-jets tagging (<u>deepFlavour</u>)
- 3. $H \rightarrow \tau\tau$: challenging reconstruction (neutrinos in all decay modes), DNN-based identification (deepTau)
- 4. $\tau_e \tau_h, \tau_\mu \tau_h, \tau_h \tau_h$ final states are considered (87.6% of the $\tau\tau$ pair decays)
- 5. Main backgrounds:
 - $t\bar{t}$ in semi-leptonic channels
 - DY and QCD multi-jet in hadronic channel
- 6. Backgrounds estimation:
 - QCD multi jet fully data-driven
 - DY and $t\bar{t}$ normalization corrected from CRs

Tau pair selections

- match with trigger objects with an additional threshold on the p_T (+5 GeV for tau and +1 GeV for ele/muon)
- Most isolated leptons with opposite charge and $\Delta R > 0.5$
- Veto events with additional electrons or muons

Distributions of the reconstructed mass of the tau pair

VBF

DNN)(DNN)

Online trigger selections

- Require the presence of a single isolated lepton (electron or muon) OR a lepton and an hadronically decaying tau OR two hadronically decaying taus.
- Dedicated trigger targeting the VBF production production mechanism developed by the analysis team and adopted in late 2017 and 2018 runs

Efficiency of the online trigger selection as a function of the HH pair reconstructed mass

Offline selections

Reconstruct a $\tau\tau$ and a bb pair in each event

Additional selections

- **VBF jet selections:** jets with $p_T > 30 \, GeV$ in the experiment acceptance → the pair with the largest invariant mass is selected
- Elliptical mass cut on $m_{ au au}$ and m_{bb} to remove outlying background events in regions where no signal is expected prior to DNN prediction.
 - optimised requiring minimal background acceptance for 90% signal efficiency
- Kinematic fit to reconstruct the HH mass

b-jet pair selections

- Jets with $p_T > 20 \; GeV$ within the tracker acceptance
- HH-BTag: DNN-based algorithm, developed to identify the b-jets coming from the decay of one Higgs boson in the final state $bb\tau\tau$
- The two candidates with the highest HH-Btag score are selected as b-jets

Distributions of the reconstructed mass of the b-jet pair

VBF Multiclassifier **DNN Discriminant** Triggers Two signal and three H→TauTau candidate H→bb candidate background categories

DNN

Enhance signal purity Constrain background 2 VBF cand.? uncertainties VBF tag? boosted? **VBF** boosted

categories/channels/years important variables resolved 2 b tag 1 b tag

DNN

CMS Preliminary bbττ, 138 fb⁻¹ (13 TeV) $\kappa_{t} = \kappa_{v} = \kappa_{vv} = 1$ ---- Median expected 68% expected Theory prediction ---- 95% expected

CMS Preliminary ·--- Median expected 68% expected Theory prediction ---- 95% expected 10²

- Cross sections larger than 5.2 (3.3) $\times \sigma_{SM}$ are
- k_{λ} constrained at 95% CL in the interval

VBF production

- Cross sections larger than **154 (124) x σ_{SM,VBF}** are excluded at 95% CL
- k_{2V} constrained at 95% CL in the interval $-0.4 < k_{2V} < 2.6$
- Strongest constraint on pp → VBF-HH cross section measured so far

Trained using SM signal and background MC samples

Single training used for all the

HH KinFit mass and chi2, $m_{\tau\tau}$ and m_{bb} among the most

excluded at 95% Confidence Level (CL)

 $-1.8 < k_{\lambda} < 8.8$

DNN

(DNN)

(DNN)