Electroweak baryogenesis in aligned two Higgs doublet model

Yushi Mura (Osaka U. PhD student)

Kazuki Enomoto (U. of Tokyo.) and Shinya Kanemura (Osaka U.) 2022/7/7 ICHEP 2022 in Bologna

Based on

K. Enomoto, S. Kanemura, and Y.M, JHEP 01 (2022) 104, arXiv: 2111.13079 [hep-ph] and

K. Enomoto, S. Kanemura, and Y.M, arXiv: 2207.00060 [hep-ph]

Dr. Wani, OU mascot¹

Standard Model (SM) is consistent with experimental data.

The origin of the Baryon Asymmetry of the Universe cannot be explained.

From Big Bang Nucleosynthesis,

$$\eta_B^{obs} = \frac{n_B}{n_\gamma} = 5.8 - 6.5 \times 10^{-10}$$
 PDG (2020)

This asymmetry is generated at the early Universe → Baryogenesis

For Baryogenesis,

Sakharov's Conditions Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967)

- ① Baryon number violation
- ② C and CP violation
- ③ Out of thermal equilibrium

must be satisfied.

Some possibilities

- Affleck-Dine mechanism
- Electroweak baryogenesis
- Leptogenesis
 etc.

Affleck and Dine, Nucl. Phys. B 249 (1985) Kuzmin, Rubakov and Shaposhnikov, Phys Lett. B 155 (1985) Fukugita and Yanagida, Phys. Lett. B 174 (1986)

Electroweak baryogenesis

Electroweak Baryogenesis (EWBG)

- ① Sphaleron process
- C violation in chiral theory, CP violation in Higgs sector
- ③ Strongly first order electroweak phase transition

EWBG in the SM,

- Insufficient CPV with Kobayashi-Masukawa phase Huet and Sather, Phys. Rev. D 51 (1995)
- Electroweak phase transition becomes crossover Kajantie et al. Phys. Rev. Lett. 77 (1996)

The potential of the SM is just assumption. Extended Higgs sectors can solve these problems !

EWBG is fixed at the EW scale and Higgs Physics.

⇒ It can be tested by the future Higgs precision experiments !

- D Baryon number violation
- 2 C and CP violation
- ③ Out of thermal equilibrium

Electroweak baryogenesis

Recent works

Various models for EWBG

Ex) SM + SU(2) doublet

Fromme, Huber and Seniuchi, JHEP 11 (2006); Cline, Kainulainen and Trott, JHEP 11 (2011); Dorsch et al. JCAP 05 (2017); and more

After the discovery of Higgs boson in 2012,

• LHC exp.

- Higgs boson has SM like couplings
 Aad
 - Aad *et al.* [ATLAS] Phys. Rev. D 101 (2020);
- Small mixing angle among scalar bosons Sirunyan et al. [CMS] Eur. Phys. J. C 79 (2019)

• Electric Dipole Moment exp.

Electron EDM $|d_e| < 1.1 \times 10^{-29} e \text{ cm}$ And reev *et al.* [ACME] Nature 562 (2018) Constraints on CPV in extended Higgs sectors

Previous work

- "SM like" Higgs boson
- Destructive interference between CPV phases Kanemura, Kubota and Yagyu, JHEP 08 (2020)

Todays talk about..

the benchmarks which can explain BAU under current data and some phenomenological consequences.

K. Enomoto, S. Kanemura, and Y.M, JHEP 01 (2022) 104

K. Enomoto, S. Kanemura, and Y.M, 2207.00060 [hep-ph] 5

Aligned Two Higgs Doublet Model

The most general potential

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1+iG^0) \end{pmatrix}, \qquad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2+ih_3) \end{pmatrix}$$

$$\begin{split} V &= -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - \left(\mu_3^2 (\Phi_1^{\dagger} \Phi_2) + h.c. \right) & \text{Higgs basis Davidson and Haber, Phys. Rev. D 72 (2005)} \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_2^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) \\ &+ \left\{ \left(\frac{1}{2} \lambda_5 \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right) \Phi_1^{\dagger} \Phi_2 + h.c. \right\}, \quad (\mu_3, \lambda_5, \lambda_6, \lambda_7 \in \mathbb{C}) \end{split}$$

Mass spectrum

Experimental fact "mixing angle among neutral scalars is small"

For simplicity, we set $\lambda_6=0$ (Higher loop corrections are non-zero)

$$= \begin{pmatrix} m_h^2 & 0 & 0 \\ 0 & m_{H_2}^2 & 0 \\ 0 & 0 & m_H^2 \end{pmatrix}$$

Coupling consts. coincide with SM ones Higgs alignment

Finally, only the CP phase $arg[\lambda_7] \equiv \theta_7$ remains.

Aligned Two Higgs Doublet Model

The most general Yukawa interaction

$$-\mathcal{L}_y = \sum_{k=1}^2 \left(\overline{Q}'_L(y_u^k)^{\dagger} \tilde{\Phi}_k u'_R + \overline{Q}'_L y_d^k \Phi_k d'_R + \overline{L}'_L y_e^k \Phi_k e'_R + h.c. \right)$$

Experimental fact "Flavor Changing Neutral Current must be suppressed"

We assume $y_f^2 = \zeta_f y_f^1$ (f = u, d, e) Yukawa alignment

Pich and Tuzon, Phys. Rev. D 80 (2009)

Summary of CP phases in the model

Potential
$$\arg[\lambda_7] \equiv \theta_7$$
Yukawa $\arg[\zeta_u] \equiv \theta_u$, $\arg[\zeta_d] \equiv \theta_d$, $\arg[\zeta_e] \equiv \theta_e$

Constraints in the model

Baryogenesis

Baryon asymmetry in the relativistic bubble wall velocity Cline and Kainulainen, Phys. Rev. D 101 (2020) Assuming the velocity as a free parameter

Collider signatures

			v_w	m_{H_2}	m_{H_3,H^\pm}	M	v_n/T_n	$L_w T_n$	η_B	ΔR	$\sigma \mathcal{B}(H_1 o \gamma \gamma)$
Strongly PT	∫ small velo. ∆	BP1a	0.1	267 GeV	$381~{ m GeV}$	$30 { m GeV}$	2.4	2.6	$7.8 imes 10^{-11}$	0.61	$104 \pm 5 \; { m fb}$
	large velo. ▽	BP1b	0.45						$9.1 imes 10^{-11}$		
Weakly PT	🛾 small velo. 🗖	BP2a	0.1	397 GeV	$302~{ m GeV}$	$30 { m GeV}$	2.0	4.1	10.8×10^{-11}	0.44	
	large velo. 🔷	BP2b	0.45						9.0×10^{-11}	0.44	

Strongly first order PT \rightarrow Non-decoupling situation $(m_{\Phi}^2 \sim \lambda v^2)$

Deviation of triple Higgs coupling $\Delta R \equiv \delta \lambda_{hhh} / \lambda_{hhh}^{SM}$

Kanemura, Okada and Senaha, Phys. Lett. B 606 (2005)

PT is relatively strong (BP1) $\Delta R = 61\%$ → Detectable in the future colliders relatively weak (BP2) $\Delta R = 44\%$ Ex) HL-LHC: 50%

Higgs to di-photon decay

Ellis, Gaillard and Nanopoulos, Nucl. Phys. B 106 (1976); Shifman et al. Sov. J. Nucl. Phys. 30 (1979); and more works Capeda et al. CERN Yellow Rep. Monogr. 7 (2019); Fujii et al. [1506.05992]; Bambade et al. [1903.01629]

 $\sigma Br(H_1 \rightarrow \gamma \gamma)_{obs} = 127 \pm 10 \text{ fb}$ ATLAS-CONF-2020-026

In each BP, $\sigma Br(H_1 \rightarrow \gamma \gamma) = 104 \pm 5$ fb At HL-LHC, uncertainty ~3%

ILC (500 GeV) : 27%

ILC (1 TeV) : 10%

Gravitational waves from EWPT

			v_w	m_{H_2}	m_{H_3,H^\pm}	M	v_n/T_n	$L_w T_n$	η_B	ΔR	$\sigma \mathcal{B}(H_1 o \gamma \gamma)$	
Strongly PT	∫ small velo. ∆	BP1a	0.1	267 GeV	381 GeV	30 GeV	2.4	2.6	$7.8 imes 10^{-11}$	0.61		
	large velo. ▽	BP1b	0.45						$9.1 imes 10^{-11}$		$104 \pm 5 { m ~fb}$	
Weakly PT	🛾 small velo. 🗖	BP2a	0.1	397 GeV	$302 \mathrm{GeV}$	$30 { m GeV}$	2.0	4.1	$10.8 imes 10^{-11}$	0.44		
	large velo. 🔷	BP2b	0.45						$9.0 imes 10^{-11}$	0.44		

Gravitational wave spectra

Grojean and Servant, Phys. Rev. D 75 (2007);

Kakizaki, Kanemura and Matsui, Phys. Rev. D 92 (2015); and more

Sensitivity curves Hashino et al. Phys. Rev. D 99 (2019)

Strong PT and large velocity are needed.

BP1b and BP2b can also be tested by GW observation.

Summary

 SM cannot explain the Baryon asymmetry of the universe EWBG as a solution of BAU is Higgs physics thus it is testable.

Aligned Two Higgs Doublet Model

- SM like 125 GeV Higgs boson
- We showed the BAU can be explained under current data.
- Additionally, some of BPs can be tested using GW signal.

Phenomenology

- Higgs triple coupling \Rightarrow HL-LHC, ILC (500GeV, 1TeV)
- Higgs to di-photon \Rightarrow HL-LHC
- Gravitational waves \Rightarrow LISA, DECIGO, BBO

Back up

Velocity dep. of baryon density

Velocity dep. of efficiency factor

Efficiency $\kappa_v(\alpha, v_w)$ means how much the latent heat is converted to the sound waves.

No hydrodynamical eq. exists when $\alpha \sim 1$, $v_w \leq c_s$. Espinosa *et al.* JCAP 06 (2010)

Predictions of CP violation

Solid : current excluded Dashed : future excluded (Belle II)

 ζ_d can be restricted from the future flavor exp.

CPV in the decays of the neutral scalar bosons ($|\zeta_d| \ll |\zeta_e|$ case)

Azimuth angle dependence in $H_{2,3} \rightarrow \tau^+ \tau^- \rightarrow X^+ \overline{\nu} X^- \nu$

Kanemura, Kubota and Yagyu, JHEP 04 (2021)

Detectability of the phase of ζ_e in ILC

Neutron EDM

Experimental bound: $|d_n| < 1.8 \times 10^{-26} e$ cm Abel *et al.* [nEDM] Phys. Rev. Lett. 124 (2020)

Solid: current Dashed: expected Red: $d_n^{BZ} + d_n(C_W)$ case Gray: $d_n^{BZ} - d_n(C_W)$ case

EW Phase transition

When *M* and λ_2 are large, $\partial_z \theta|_{max}$ becomes small.

Red dotted : v_n/T_n Color solid : L_wT Black dashed : $\partial_z \theta|_{max}$

Source term $S_{\theta} = -v_w K_8 (m^2 \theta')' + v_w K_9 \theta' m^2 (m^2)'$

Scatter plot for eEDM and BAU

 $\lambda_2 = 0.1, \ m_{\Phi} = 350 \text{ GeV}, \ M = 30 \text{ GeV}, \ v_w = 0.1,$ $\theta_u = \theta_d = [0, 2\pi), \ |\zeta_d| = |\zeta_e| = [0, 10], \ |\lambda_7| = [0.5, 1.0], \ \theta_7 = [0, 2\pi).$

These points are allowed from various constraints.

Fermion loop contributions are proportional to $|\zeta_u||\zeta_e|\sin\delta_e$. $(\delta_e \equiv \theta_u - \theta_e)$

Many points are satisfied from eEDM data and they generate sufficient BAU.

Triple Higgs couplings

Destructive interference

Dimension 5 effective operator

$$H_{\rm EDM} = -d_f \frac{\mathbf{S}}{|\mathbf{S}|} \cdot \mathbf{E} \qquad \qquad \mathcal{L}_{\rm EDM} = -\frac{d_f}{2} \overline{f} \sigma^{\mu\nu} (i\gamma_5) f F_{\mu\nu}$$

Time reversal

 $\mathcal{T}(\boldsymbol{E}) = \boldsymbol{E}, \mathcal{T}(\boldsymbol{S}) = -\boldsymbol{S}$ T violation o From CPT theorem, CP is violated.

Two diagrams contribute to the electron EDM in our model.

```
Experimental bound |d_e| < 1.1 \times 10^{-29} e cm
```


Destructive interference between two independent CP phase Kanemura, Kubota and Yagyu, JHEP 08 (2020)

 θ_7 and θ_u are important to generate BAU.

Angular distribution

Detection of CP phase θ_e in ILC

Decay process of the heavy neutral scalars $H_{2,3} \rightarrow \tau^+ \tau^- \rightarrow X^+ \overline{\nu} X^- \nu$

Kanemura, Kubota and Yagyu, JHEP 04 (2021)

$$\frac{\tau^{+} \ \Delta \phi}{\vec{h}^{+}} \xrightarrow{\tau^{-}} z \quad \int \int d\cos\theta^{-} d\cos\theta^{+} \overline{|\mathcal{M}(H_{2} \to \tau^{-}\tau^{+} \to X^{-}\nu X^{+}\overline{\nu})|^{2}}}{\propto 16 - \pi^{2}\cos(2\theta_{e} - \Delta\phi)}$$

Prospects

More general Yukawa structure

Ex) Bottom EWBG and *B* physics

Modak and Senaha, Phys. Rev. D 99 (2019) $c_{R-q} = 0.1, \rho_{tt} = \lambda_t, m_{H^+} = 600 \text{ GeV}$

Blue: $\eta_B / \eta_B^{obs} = 1$ Red: ΔA_{CP} (Belle II) Green: $B \rightarrow s\gamma$ (Belle II)

Left (Right): Central value is the SM (Current) one

Effective potential

Thermal resummation \rightarrow Parwani scheme 1 loop potential \rightarrow Landau gauge ($\xi = 0$)

Renormalization condition

 \rightarrow MS-bar scheme ($\lambda_{2,7}, M$) + On-shell scheme (other parameters)

Relation between ϕ/T and ΔR (right figure)

CP violating bubble

Order parameter $h_1 = h, h_2 = H\cos\varphi_H, h_3 = H\sin\varphi_H$

We used CosmoTransitions to calculate the bubble wall profile.

Wainwright, Comput. Phys. Commun. 183 (2011)

Estimation of baryon density

26

Transport equations

Boltzmann equation $(\partial_t + \boldsymbol{v}_g \cdot \partial_{\boldsymbol{x}} + \boldsymbol{F} \cdot \partial_{\boldsymbol{p}}) f_i = C[f_i, f_j, \ldots]$ $v_g = \frac{p_z}{E_0} \left(1 \pm s \frac{\theta'}{2} \frac{m^2}{E_0^2 E_{0z}} \right)$ Overall signs are flipped between particle and anti-particle. $F_z = -\frac{(m^2)'}{2E_0} \pm s \frac{(m^2 \theta')'}{2E_0 E_{0z}} \mp s \frac{\theta' m^2 (m^2)'}{4E_0^3 E_{0z}}$

Particle distributions are small away from its equilibrium form

$$f_i = \frac{1}{e^{\beta[\gamma_w(E_i + v_w p_z) - \mu_i]} \pm 1} + \delta f_i$$

Boltzmann equation can be expanded by small wall velocity, and after integrated in momentum,

$$v_w K_1 \mu' + v_w K_2(m^2)' \mu + u' - \langle \boldsymbol{C}[f] \rangle = 0 \qquad \text{(K series are z-dependent functions)}$$
$$+ K_4 \mu' + v_w \tilde{K}_5 u' + v_w \tilde{K}_6(m^2)' u - \left\langle \frac{p_z}{E_0} \boldsymbol{C}[f] \right\rangle = S_\theta \qquad S_\theta = -v_w K_8(m^2\theta')' + v_w K_9 \theta' m^2(m^2)'$$

Plasma flame

Integrated in wall flame

$$\frac{\partial n_B}{\partial t} = \frac{3}{2} \Gamma_{\rm sph} \left(3\mu_{B_L} - \frac{A}{T^3} n_B \right) \qquad \qquad \eta_B = \frac{405\Gamma_{\rm sph}}{4\pi^2 v_w g_* T} \int_0^\infty dz \; \mu_{B_L} f_{\rm sph} e^{-45\Gamma_{\rm sph} z/(4v_w)} \\ f_{\rm sph}(z) = \min\left(1, \frac{2.4T}{\Gamma_{\rm sph}} e^{-40v(z)/T} \right)$$

Higgs triple coupling

de Blas et al. JHEP 01(2020)

Hadron collider

Higgs to di-photon decay

Non decoupling effect in $H_1 \rightarrow \gamma \gamma$

The constraints on the coupling $H_1H^{\pm}H^{\pm}$

$$m_{H^{\pm}}^2 = M^2 + \frac{1}{2}\lambda_3 v^2$$

Red line is prediction in the case of M = 30 GeV.

SM expected (blue):
$$\sigma Br(H_1 \rightarrow \gamma \gamma) = 116 \pm 5$$
 fb

Observed (gray): $\sigma Br(H_1 \rightarrow \gamma \gamma) = 127 \pm 10$ fb

 σ is inclusive production cross section of H_1 .

ATLAS-CONF-2020-026

Other constraints

STU parameter

Considering Higgs alignment and $m_{H_3} = m_{H^{\pm}}$, our potential has custordial symmetry at 1 loop level. $V = -\frac{1}{2}\mu_1^2 \operatorname{Tr}(M_1^{\dagger}M_1) - \frac{1}{2}\mu_2^2 \operatorname{Tr}(M_2^{\dagger}M_2) - \mu_{3R}^2 \operatorname{Tr}(M_1^{\dagger}M_2) + \mu_{3I}^2 \operatorname{Tr}(M_1^{\dagger}M_2\tau_3) \quad \text{Pomarol and Vega, Nucl. Phys. B 413 (1994)} \\ + \frac{1}{8}\lambda_1 \operatorname{Tr}^2(M_1^{\dagger}M_1) + \frac{1}{8}\lambda_2 \operatorname{Tr}^2(M_2^{\dagger}M_2) + \frac{1}{4}\lambda_3 \operatorname{Tr}(M_1^{\dagger}M_1) \operatorname{Tr}(M_2^{\dagger}M_2) \\ + \frac{1}{2}\lambda_{5R} \operatorname{Tr}^2(M_1^{\dagger}M_2) + \frac{1}{4}(\lambda_4 - \lambda_{5R}) \left(\operatorname{Tr}^2(M_1^{\dagger}M_2) - \operatorname{Tr}^2(M_1^{\dagger}M_2\tau_3) \right) + \frac{1}{2}\lambda_{5I} \operatorname{Tr}(M_1^{\dagger}M_2) \operatorname{Tr}(M_1^{\dagger}M_2\tau_3) \\ + \lambda_{6R} \operatorname{Tr}(M_1^{\dagger}M_1) \operatorname{Tr}(M_1^{\dagger}M_2) + \lambda_{6I} \operatorname{Tr}(M_1^{\dagger}M_1) \operatorname{Tr}(M_1^{\dagger}M_2\tau_3) \\ + \lambda_{7R} \operatorname{Tr}(M_2^{\dagger}M_2) \operatorname{Tr}(M_1^{\dagger}M_2) + \lambda_{7I} \operatorname{Tr}(M_2^{\dagger}M_2) \operatorname{Tr}(M_1^{\dagger}M_2\tau_3) \quad \Rightarrow \mathbf{T} = \mathbf{0}$

S and U parameter in general CPV 2HDM Haber and Neil, Phys. Rev. D 83 (2011)

S and U are very small in our benchmark scenario.

Bounded from below

Unitarity bound (M = 30 GeV)

Kanemura and Yagyu, Phys. Lett. B 751 (2015)

Ferreira, Santos and Barroso, Phys. Lett. B 603 (2004)

$$\lambda_1 \ge 0, \ \lambda_2 \ge 0$$
$$\lambda_3 \ge -\sqrt{\lambda_1 \lambda_2}, \ \lambda_3 + \lambda_4 \mp \lambda_{5R} \ge -\sqrt{\lambda_1 \lambda_2}$$
$$|\lambda_{7R}| \le \frac{1}{4} (\lambda_1 + \lambda_2) + \frac{1}{2} (\lambda_3 + \lambda_4 + \lambda_{5R})$$
$$|\lambda_{7I}| \le \frac{1}{4} (\lambda_1 + \lambda_2) + \frac{1}{2} (\lambda_3 + \lambda_4 - \lambda_{5R})$$

Shape of the chemical potential

When the top transport scenario, θ_7 and θ_u are important for the BAU.

 $v_n(z)$ v_w μ Spinaleron **Sphaleron** Localized mass around the wall $\rightarrow Z$ $m_t(z) = \frac{y_t}{\sqrt{2}}v(z)e^{i\theta(z)}$ 0.001 top bottom singlet top 0.0005 higgs makes chemical potential. (GeV) µ(GeV) -0.001 $v(z), \theta(z), T_n$, etc. -0.0015 depend on models and dynamics of PT. -0.002-0.4 -0.2 0 0.2 0.4 0.8 0.6 z (GeV⁻¹)

Wall width dependence of BAU

Cline and Laurent, Phys. Rev. D 104 (2021)

WKB formalism has accidental zero-crossing behavior. $\frac{32}{32}$

Triviality bound

Scalar coupling often diverge by non-decoupling effect. $m_H \simeq \lambda v^2 + M^2 \gg M^2$

```
In BP, the largest coupling \lambda \sim 3,
Landau pole appears around 1-3 TeV when couplings are run from Z boson scale.
Cline, Kainulainen and Trott, JHEP 11 (2011)
```

However, the scale of Landau pole depends on whether threshold effects are considered.

RGE analysis

M = 240,	$m_{H^0_2} = 280, $	$m_{H^0_3} = 230,$	$m_{H^{\pm}} = 230$	(in GeV).
$ \zeta_u = 0.01,$	$ \zeta_d = 0.1,$	$ \zeta_e = 0.5,$	$ \lambda_7 = 0.3,$	$\lambda_2 = 0.5.$
$\theta_u = 1.2,$	$\theta_d = 0,$	$\theta_e = \pi/4,$	$\theta_7 = -1.8$	(in rad).

Kanemura, Kubota and Yagyu, JHEP 08 (2020)

Direct detections

Kanemura, Takeuchi and Yagyu, Phys. Rev. D 105 (2022)

eEDM and BAU in L7 plane

Model	ς_d	ς_u	Sı
Type I	\coteta	\coteta	\coteta
Type II	$-\tan\beta$	$\cot eta$	$-\tan\beta$
$Type \ X$	\coteta	\coteta	$-\tan\beta$
Type Y	$-\tan\beta$	\coteta	\coteta
Inert	0	0	0

Type I like

 $|\zeta_u| = |\zeta_d| = |\zeta_e| = \cot\beta$

Type X like

 $|\zeta_u| = |\zeta_d| = \cot \beta$ $|\zeta_e| = -\tan \beta$

 $m_{H^\pm} \simeq 300 {
m GeV}, |\zeta_u| \lesssim 0.4$

Collider constraints

	Aiko, Kanemura, Kil	kuchi, Mawatari, Sakura	ii and Yagyu,	Nucl. Phys.	. B 966 (2020)	Model Type I	$\frac{\varsigma_d}{\cot\beta}$	$\frac{\varsigma_u}{\cot\beta}$	$\frac{\varsigma_l}{\cot\beta}$
Cι	irrent					Type II Type X Type Y Inert	$-\tan\beta \\ \cot\beta \\ -\tan\beta \\ 0$	$\begin{array}{c} \cot\beta\\ \cot\beta\\ \cot\beta\\ 0\end{array}$	$- aneta \ - aneta $
10 tan $_{\beta}$	Current exclusion; Type-I $S_{\beta-\alpha} = 1$ $A \rightarrow \tau \tau$ $A(bb) \rightarrow \tau \tau$ $A(bb) \rightarrow \tau \tau$ $A(bb) \rightarrow t \tau$ $A(bb) \rightarrow bb$ $A \rightarrow t t$ $A \rightarrow t t t$ $A \rightarrow t t$ $A \rightarrow t t t$ $A \rightarrow t t t t t$	Current exclusion; Type-II 30 $frac{}{}$ $S_{\beta-\alpha} = 1$ $A \rightarrow \tau \tau$ $A(bb) \rightarrow \tau \tau$ $A(bb) \rightarrow bb$ $A \rightarrow tt$ $A \rightarrow zh$ $A \rightarrow th$ $A \rightarrow t$	Current exclus	sion; Type-X $s_{\beta-\alpha} = 1$ $A \rightarrow \tau \tau$ $A(bb) \rightarrow \tau \tau$ $A(bb) \rightarrow bb$ $A \rightarrow tt$ $A \rightarrow zh$ $A(bb) \rightarrow zh$ $H \rightarrow hh$ $H \rightarrow hh$ $H \rightarrow zz$ $H \rightarrow tb$ $H \rightarrow tb$ H	Current exclusion	h; Type-Y $s_{\beta-\alpha} = 1$ $A \rightarrow \tau\tau$ $A(bb) \rightarrow \tau\tau$ $A(bb) \rightarrow bb$ $A \rightarrow tt$ $A \rightarrow tt$ $A(bb) \rightarrow Zh$ $H \rightarrow hh$ $H \rightarrow ZZ$ $H^{\pm} \rightarrow tb$ $H^{\pm} \rightarrow \tau\nu$ 1500 2000	H ₂ , H ₂ H ²	$_{,3} \rightarrow$ $_{,3} \rightarrow$ $^{\pm} \rightarrow$	ττ tt tb

HL-LHC

Other EDMs

 $\begin{array}{l} \mbox{Current} \\ |d_e| < 1.1 \times 10^{-29} \mbox{ (ThO)} \\ |d_{\mu}| < 1.5 \times 10^{-19} \mbox{(g-2)} \\ |d_{\tau}| < 0 \mbox{(}10^{-17} \mbox{) (Belle)} \\ |d_{\tau}| < 1.6 \times 10^{-18} \mbox{(from eEDM)} \end{array}$

$$\begin{split} & \frac{\mathsf{Expected}}{|d_e| < O(10^{-30})} \\ & |d_{\mu}| < O(10^{-21}) \\ & |d_{\tau}| < O(10^{-18}) \text{(Belle II)} \end{split}$$

 Theory
 $d_e(1loop) = O(10^{-34})$ $\kappa = O(1), 1$ loop contributions are proportional to m_e^3 .

 $d_{\mu}(1loop) = O(10^{-27})$ $m_{\mu} \sim 200m_e$
 $d_{\tau}(1loop) = O(10^{-24})$ $m_{\tau} \sim 3600m_e$
 $d_e(BZ) = O(10^{-28})$ $|\zeta| = O(10^{-1})$, BZ contributions are proportional to m_e
 $d_{\mu}(BZ) = O(10^{-26})$ $m_{\mu} \sim 200m_e$
 $d_{\tau}(BZ) = O(10^{-25})$ $m_{\tau} \sim 3600m_e$

1 loop contributions include $\zeta^2 \rightarrow$ with no lepton universality, $|\zeta_{\tau}|, |\zeta_{\mu}| \geq O(10^3)$ are excluded.