

Higgs boson decay to J/ψ via *c*-quark fragmentation

Yang Ma

Pittsburgh Partcile-physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, PA 15260, USA

July 8, 2022

2202.08273, in collaboration with T. Han, A. Leibovich (PITT), X. Tan (HIT)

Why Charm-Higgs coupling?

Higgs is special

- Higgs provides masses to all other elementary particles.
- Higgs is the only know elementary particle with spin 0.
- A portal to new physics beyond the Standard Model.

Measure the Higgs couplings

Measuring Charm-Higgs coupling: current status

Measuring $Hc\bar{c}$ coupling is not easy

- Smaller mass \Rightarrow Smaller branching fraction: BR($H \rightarrow c\bar{c}$) $\simeq 2.9\%$
- Large QCD background at hadron colliders \Rightarrow Need c-tagging
- *c*-tagging is challenging

Current experimental searching

- κ framework: For $y_c^{SM} = \sqrt{2}m_c/v$, set $y_c = \kappa_c y_c^{SM}$
- $\bullet pp \to VH(c\bar{c})$
 - Need *c*-tagging.
 - LHC Run 2: ATLAS $\kappa_c \le 8.5$ [atlas-conf-2021-021], CMS $1.1 < |\kappa_c| < 5.5$ [cms-pas-hig-21-008]
 - **Future HL-LHC**: $\kappa_c \leq 3$. [2201.11428, ATL-PHYS-PUB-2021-039]
- To avoid c-tagging \Rightarrow Higgs decay to J/ψ
 - Clean final states $J/\psi \rightarrow \mu^+\mu^-$, may avoid c-tagging
 - Use an addition photon as trigger: $H \rightarrow J/\psi + \gamma$
 - The rate is too low: $BR \sim 10^{-6}$. [1306.5770, 1407.6695]
 - Result is less sensitive: $\kappa_c \le 100$. [1807.00802, 1810.10056]

Higgs decay to charmonia (I)

The Nonrelativistic QCD framework

The Higgs decay width in NRQCD factorization

$$\Gamma = \sum_{\mathbb{N}} \hat{\Gamma}_{\mathbb{N}}(H \to (Q\bar{Q})[\mathbb{N}] + X) \times \langle \mathcal{O}^{h}[\mathbb{N}] \rangle, \quad \mathrm{d}\hat{\Gamma}_{\mathbb{N}} = \frac{1}{2m_{H}} \frac{|\mathscr{M}|^{2}}{\langle \mathcal{O}^{Q\bar{Q}} \rangle} \mathrm{d}\Phi_{3}$$

■ Long distance matrix element (LDME) are related to the wave function at origin

$$\langle \mathcal{O}^{J/\Psi}[{}^{3}S_{1}^{[1]}] \rangle = \frac{3N_{c}}{2\pi} |R(0)|^{2}, \quad \langle \mathcal{O}^{\eta_{c}}[{}^{1}S_{0}^{[1]}] \rangle = \frac{N_{c}}{2\pi} |R(0)|^{2}$$

$$\langle \mathcal{O}^{Q\bar{Q}} \rangle = 6N_{c}, \text{ for } {}^{3}S_{1}^{[1]}, \quad \langle \mathcal{O}^{Q\bar{Q}} \rangle = 2N_{c}, \text{ for } {}^{1}S_{0}^{[1]}$$

Higgs decay to J/ψ and a photon

- $Hc\bar{c}$ diagram is suppressed \Rightarrow Small branching fraction
- The dominant contribution is from $H\gamma\gamma$ diagram \Rightarrow Less sensitive to $\kappa_c \Gamma_{H\gamma\gamma^*} \simeq 1.32 \times 10^{-8} \text{ GeV}$, $\Gamma_{\text{SM}} \simeq 1.00 \times 10^{-8} \text{ GeV}$ [1306.5770, 1407.6695]

Higgs decay to charmonia (II)

Our idea

- \blacksquare Take advantage of the clean $J/\psi \to \mu^+\mu^-$ decay
- Look for a process

$$H \to c + \bar{c} + J/\psi \text{ (or } \eta_c)$$

- \blacksquare The rate is larger than that of $H \to J/\psi + \gamma$
- The $Hc\bar{c}$ channel dominates over possible contaminations

Color-singlet mode: Charm quark fragmentation to ${}^3S_1^{[1]}(J/\psi)$ and ${}^1S_0^{[1]}(\eta_c)$

Compare with $H \rightarrow J/\psi + \gamma$

- Enhancement from the quark fragmentation ⇒ Larger rate
- The decay width is more sensitive to κ_c

More corrections from QED and EW sector

Pure QED diagrams: sizable correction to ${}^3S_1^{[1]}(J/\psi)$ production The photon propagator $1/q^2=1/m_{J/\psi}^2$

Single photon fragmentation (SPF) \Rightarrow logarithmic enhancement Electroweak correction from the HZZ diagrams

This may be the contamination for Charm-Higgs coupling determination

One of the *Z* can be on shell \Rightarrow **resonance enhancement**

• The resonance peak can be seen in the $J/\psi(\eta_c)$ energy distribution.

Sizable for ${}^{1}S_{0}^{[1]}(\boldsymbol{\eta}_{c})$ due to the larger axial $Zc\bar{c}$ coupling.

Charmonia productiuon via color-octet states

- A key property of NRQCD: color-octet states also contribute
- A quarkonium can also be produced through color-octet $Q \, \bar{Q}$ Fork states
- \blacksquare New states involved: ${}^3S_1^{[8]},\, {}^1S_0^{[8]},\, {}^3P_J^{[8]}$, and ${}^1P_1^{[8]}$
- \blacksquare The LDMEs $\langle \mathscr{O}^h[^{2S+1}L_J^{[{\rm color}]}]\rangle$ need to be fitted from experimental data

Reference	$\langle \mathscr{O}^{J/\psi}[{}^1S_0^{[8]}] \rangle$	$\langle \mathscr{O}^{J/\psi}[{}^3S_1^{[8]}] \rangle$	$\langle \mathscr{O}^{J/\psi}[^{3}P_{0}^{[8]}] \rangle / m_{c}^{2}$
G. Bodwin,	$(9.9 \pm 2.2) \times 10^{-2}$	$(1.1 \pm 1.0) \times 10^{-2}$	$(4.89 \pm 4.44) \times 10^{-3}$
K.T. Chao,	$(8.9\pm0.98) imes10^{-2}$	$(3.0 \pm 1.2) \times 10^{-3}$	$(5.6\pm 2.1)\times 10^{-3}$
Y. Feng,	$(5.66 \pm 4.7) \times 10^{-2}$	$(1.77\pm0.58)\times10^{-3}$	$(3.42 \pm 1.02) \times 10^{-3}$

New diagrams for ${}^{3}S_{1}^{[8]}$

Similar to the SPF: The gluon propagator $1/q^2 = 1/m_{J/\psi}^2$

Single gluon fragmentation (SGF) \Rightarrow logarithmic enhancement

Numerical parameters

$$\begin{split} &\alpha = 1/132.5, \quad \alpha_s(2m_c) = 0.235, \quad m_c^{\rm pole} = 1.5 \ {\rm GeV}, \quad m_c(m_H) = 0.694 \ {\rm GeV}, \\ &m_H = 125 \ {\rm GeV}, \quad m_W = 80.419 \ {\rm GeV}, \quad m_Z = 91.188 \ {\rm GeV}, \quad v = 246.22 \ {\rm GeV}, \\ &y_c^{\rm SM} = \frac{\sqrt{2}m_c(m_H)}{v} \approx 3.986 \times 10^{-3}, \end{split}$$

Decay width and branching fraction

	QCD [CS]	QCD+QED [CS]	Full [CS]	Full [CO]	Full [CS+CO]
$\Gamma(H \to c\bar{c} + J/\psi)$ (GeV)	4.8×10^{-8}	5.8×10^{-8}	6.1×10^{-8}	2.2×10^{-8}	8.3×10^{-8}
${ m BR}(H o c \bar{c} + J/\psi)$	1.2×10^{-5}	1.4×10^{-5}	$1.5 imes 10^{-5}$	$5.3 imes 10^{-6}$	2.0×10^{-5}
$\Gamma(H \rightarrow c\bar{c} + \eta_c)$ (GeV)	4.9×10^{-8}	5.1×10^{-8}	6.3×10^{-8}	1.8×10^{-7}	2.4×10^{-7}
$BR(H \rightarrow c\bar{c} + \eta_c)$	$1.2 imes 10^{-5}$	$1.2 imes 10^{-5}$	$1.5 imes 10^{-5}$	$4.5 imes10^{-5}$	$6.0 imes10^{-5}$

Charmonium energy distributions

Charmonium transverse momentum distribution

Transverse momentum distribution for the free charm quark

Probe the $Hc\bar{c}$ coupling (I)

Use the κ framework $y_c = \kappa_c y_c^{SM}$, BR $\approx \kappa_c^2$ BRSM

Note there are small contaminations:

HZZ diagrams

• The
$$H \to g^* g^* / \gamma^* \gamma^* \to J/\psi + c \bar{c}$$
 channel

Probe the $Hc\bar{c}$ coupling (II)

Some rough analysis:

- \blacksquare Higgs production cross section at LHC $\sigma_{H}\sim 50~{\rm pb}$
- Expect HL-LHC $L \sim 3 ~{\rm ab^{-1}}$ at ATLAS and CMS and $L \sim 0.3 ~{\rm ab^{-1}}$ at LHCb
- Detection efficiency ${m {arepsilon}}$ for the final state $c\, ar c \, + \, \ell^+ \ell^-$
- $\blacksquare \ {\rm BR}(J/\psi \to \ell^+ \ell^-) \sim 12\%, \ {\rm BR}(H \to J/\psi + c \bar{c}) \sim 2 \times 10^{-5}$
- Event number $N = L\sigma_H \ \epsilon \ BR(H \to c\bar{c}\ell^+\ell^-) \approx 12 \ \kappa_c^2 \times \frac{L}{ab^{-1}} \times \frac{\epsilon}{10\%}$
- \blacksquare Considering the statistical error only $\delta N \sim \sqrt{N}$ gives

$$\Delta \kappa_c \approx 15\% \times (\frac{L}{\mathrm{ab}^{-1}} \times \frac{\varepsilon}{10\%})^{-1/2}$$

Detection efficiency ε :

- Double charm-tagging $(40\%)^2 \sim 16\%$
- Kinematic acceptance 50%
- Assume $\varepsilon \sim 10\% \Rightarrow \Delta \kappa_c \sim 15\%$

Probe the $Hc\bar{c}$ coupling (III)

Background: $pp \rightarrow J/\psi + X$

- Prompt J/ψ production $BR(J/\psi \rightarrow \mu^+\mu^-) \times \sigma(pp \rightarrow J/\psi) \simeq 860$ pb [1710.11002]
- Estimate 75000 events for $pp \rightarrow J/\psi + c\bar{c} \Rightarrow \sim 25 \text{ fb}$ for a 3 ab^{-1} HL-LHC [2012.14161]
- Charm-tagging is needed. Some kinematic cuts may help.

Probe the $Hc\bar{c}$ coupling (IV)

Background: $H \rightarrow J/\psi + b\bar{b}$ Color-octet contribution dominates

Charmonium energy distributions

Take the ${}^3S_1^{[8]}$ LDME uncertainty for error estimation

- Need to determine charm from bottom \Rightarrow Charm-tagging is needed.
- Large uncertainty from LDME \Rightarrow More work on LDMEs fitting is needed.

- If there were no background: $\Delta \kappa_c \sim 15\%$
- However, there is background in the real world:
- Assume 10,000 background events after the election cuts at the HL-LHC
- \blacksquare Assume the detection efficiency $\mathcal{E}\sim 10\%$
- The signal event number is given by

$$N = L \sigma_H \ \varepsilon \ \text{BR}(H \to c \bar{c} \ell^+ \ell^-) \approx 12 \ \kappa_c^2 \times \frac{L}{\text{ab}^{-1}} \times \frac{\varepsilon}{10\%}$$

Sensitivity
$$S \simeq N_{\text{signal}} / \sqrt{N_{\text{Background}}}$$

 \Rightarrow It is possible to reach 2σ for $\kappa_c \approx 2.4$.

• systematic effect $N_{\rm signal}/N_{\rm Background} = 2\%$ for $\kappa_c \approx 2.4$.

Conclusion

- Higgs is special and important
- The Higgs sector is the portal to new physics beyond SM.
- Testing the SM mass generation mechanism helps BSM physics searches.
- The Yukawa couplings of the 3rd generation fermions are precisely measured ⇒ Charm quark is the next target.
- For the current determination of the Charm-Higgs coupling
- $pp \rightarrow VH(c\bar{c})$, *c*-tagging is challenging ATLAS: $\kappa_c < 8.5$, CMS: $1.1 < |\kappa_c| < 5.5$, Future 3 ab⁻¹ HL-LHC: $\kappa_c < 3$
- $H \rightarrow J/\psi + \gamma$, no need for *c*-tagging but insensitive to κ_c ATLAS: $\kappa_c < 100$
- Another possible approach: $H \rightarrow J/\psi + c\bar{c}$
- The rate is larger due to the fragmentation enhancements
- There are both color-singlet and color-octet contributions
- The QED and EW corrections can be sizable, so need to be included
- \blacksquare The SM prediction gives $BR \sim 2 \times 10^{-5}$
- For a possible 3 ab^{-1} HL-LHC, with a 10% final state detection efficiency $\Rightarrow \Delta \kappa_c \sim 10\%$
- Assume there are 10,000 background events $\Rightarrow 2\sigma$ for $\kappa_c \simeq 2.4$
- More work in progress:
- Background analysis, detector/systematic effects
- Better LDMEs fittings, higher order calculations/resummation ...

Worry about VMD ?

- $H \rightarrow J/\psi + c \bar{c}$
 - Larger decay rate ${\rm BR}(H \to J/\psi + c \bar{c}) \simeq 2 \times 10^{-5}$
 - Sensitive to Hcc̄ coupling QCD and QED dominates
 - Other diagrams

 $\begin{array}{l} {\rm BR}(g^*g^*)\sim 2.5\times 10^{-6}, \; {\rm BR}(\gamma^*\gamma^*)< 2\times 10^{-7}\\ \bullet \; \mbox{No need to worry about VMD} \end{array}$

 $H \rightarrow J/\psi + \gamma$

- Small decay rate
 - ${
 m BR}(H \to J/\psi + \gamma) \simeq 2.8 \times 10^{-6}$
- Insensitive to $Hc\bar{c}$ coupling $\Rightarrow \kappa_c \le 100$

VMD dominates

• $\gamma^* \rightarrow J/\psi$ dominates over $Hc\bar{c}$ Two orders of magnitude larger. Color-singlet VS color-octet

Recall the NRQCD factorization formalism

$$\Gamma = \sum_{\mathbb{N}} \widehat{\Gamma}_{\mathbb{N}}(H \to (Q\bar{Q})[\mathbb{N}] + X) \times \langle \mathscr{O}^{h}[\mathbb{N}] \rangle$$

Long distance: the color-octet LDMEs are suppressed They are in higher orders of v than the color-singlet one

$$\begin{split} &\frac{\langle \mathcal{O}^{J/\psi}(^{1}S_{0}^{[8]})\rangle}{\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[1]})\rangle}\sim \mathcal{O}(v^{3}), \quad \frac{\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[8]})\rangle}{\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[1]})\rangle}\sim \mathcal{O}(v^{4}), \quad \frac{\langle \mathcal{O}^{J/\psi}(^{3}P_{J}^{[8]})\rangle}{\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[1]})\rangle}\sim \mathcal{O}(v^{4}), \\ &\frac{\langle \mathcal{O}^{\eta_{c}}(^{3}S_{1}^{[8]})\rangle}{\langle \mathcal{O}^{\eta_{c}}(^{1}S_{0}^{[1]})\rangle}\sim \mathcal{O}(v^{3}), \quad \frac{\langle \mathcal{O}^{\eta_{c}}(^{1}P_{1}^{[8]})\rangle}{\langle \mathcal{O}^{\eta_{c}}(^{1}S_{0}^{[1]})\rangle}\sim \mathcal{O}(v^{4}) \end{split}$$

Short distance coefficient (SDC)

The color factors are different for color-singlet and color-octet states

	Cha	arm frag	SPF	SGF	
	QCD	QED	QCD×QED	QED	QCD
CS	16/9	1	4/3	9	-
CO	2/9	8	-4/3	-	2

- There may appear new diagrams for color-octet state production The SGF diagrams result in large ³S₁^[8] SDC
 - \Rightarrow Sizable color-octet contribution (mainly from ${}^{3}S_{1}^{[8]}$)

Color-octet contributions

	${}^{3}S_{1}^{[8]}$	${}^{1}S_{0}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{J}^{[8]}$	Total
$\Gamma(H \to c\bar{c} + J/\psi) \text{ (GeV)}$	2.0×10^{-8}	9.8×10^{-10}	-	2.2×10^{-10}	2.2×10^{-8}
$BR(H \to c\bar{c} + J/\psi)$	$5.0 imes 10^{-6}$	$2.4 imes 10^{-7}$	-	$5.3 imes 10^{-8}$	$5.3 imes 10^{-6}$
$\Gamma(H ightarrow c ar{c} + oldsymbol{\eta}_c)$ (GeV)	$1.8 imes 10^{-7}$	$3.6 imes10^{-11}$	$1.0 imes10^{-10}$	-	$1.8 imes 10^{-7}$
$BR(H \rightarrow c\bar{c} + \eta_c)$	4.5×10^{-5}	8.9×10^{-9}	2.5×10^{-8}	-	4.5×10^{-5}

Contributions with respect to QCD

$\hat{\Gamma}_{\mathbb{N}}/\hat{\Gamma}_{\mathbb{N}}^{\mathrm{QCD}}$	${}^{1}S_{0}^{[1]}$	${}^{3}S_{1}^{[1]}$	${}^{1}S_{0}^{[8]}$	${}^{3}S_{1}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{0}^{[8]}$	${}^{3}P_{1}^{[8]}$	${}^{3}P_{2}^{[8]}$
QCD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
QED	$1.1 imes 10^{-4}$	0.077	0.0073	1.1×10^{-5}	0.0068	0.0073	0.0073	0.0073
QCD×QED	0.021	0.14	-0.17	0.0012	-0.15	-0.17	-0.17	-0.17
EW	0.24	0.051	0.28	$2.6 imes10^{-4}$	1.4	0.29	0.33	1.5

Some observations

- QCD is dominant in most of the Fock states
- \blacksquare SPF brings sizable QED correction to ${}^3S_1^{[1]}$, but it is forbidden for ${}^1S_0^{[1]}$
- **SGF** makes ${}^{3}S_{1}^{[8]}$ super large
- For ${}^1S_0^{[8]}$ and ${}^3P_J^{[8]}$, charm-quark fragmentation is the only production channel, so that QED and QCD differ by a universal factor
- \blacksquare EW correction is large since Z is closed to its mass shell

Color-octet uncertainties from the LDMEs

Color-octet contributions: ${}^{3}S_{1}^{[8]}$ dominates

	${}^{3}S_{1}^{[8]}$	${}^{1}S_{0}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{J}^{[8]}$	Total
$\Gamma(H \to c\bar{c} + J/\psi)$ (GeV)	2.0×10^{-8}	9.8×10^{-10}	-	2.2×10^{-10}	2.2×10^{-8}
$BR(H \to c\bar{c} + J/\psi)$	$5.0 imes10^{-6}$	$2.4 imes10^{-7}$	-	$5.3 imes10^{-8}$	$5.3 imes10^{-6}$
$\Gamma(H \rightarrow c\bar{c} + \eta_c)$ (GeV)	$1.8 imes 10^{-7}$	3.6×10^{-11}	1.0×10^{-10}	-	$1.8 imes 10^{-7}$
$BR(H \to c\bar{c} + \eta_c)$	4.5×10^{-5}	$8.9 imes 10^{-9}$	2.5×10^{-8}	-	$4.5 imes 10^{-5}$

Take the ${}^{3}S_{1}^{[8]}$ LDME for the uncertainty estimation

$$\begin{split} & \text{BR}(H \to c \,\bar{c} + J/\psi) = (2.0 \pm 0.5) \times 10^{-5}, \\ & \text{BR}(H \to c \,\bar{c} + \eta_c) = (6.0 \pm 1.0) \times 10^{-5}. \end{split}$$

When is y_c not related to the charm mass?

Higgs Effective Field Theory (HEFT)

SU(2) doublets of the global $SU(2)_{L,R}$ symmetries:

$$Q_L = \begin{pmatrix} U_L \\ D_L \end{pmatrix}, \quad Q_R = \begin{pmatrix} U_R \\ D_R \end{pmatrix}, \quad L_L = \begin{pmatrix} \mathbf{v}_L \\ E_L \end{pmatrix}, \quad L_R = \begin{pmatrix} 0 \\ E_R \end{pmatrix}.$$

Define

$$U(x) \equiv \exp(i\sigma_a\pi^a(x)/v)$$

so that the Lagrangian contains

$$\mathscr{L} \supset -\frac{v}{\sqrt{2}} \bar{Q}_L U y_Q(h) Q_R - \frac{v}{\sqrt{2}} \bar{L}_L U y_L(h) L_R + h.c.$$

The functions $y_Q(h)$ and $y_L(h)$ control the Yukawa couplings

$$y_Q(h) \equiv \operatorname{diag}\left(\sum_n y_U^{(n)} \frac{h^n}{v^n}, \sum_n y_D^{(n)} \frac{h^n}{v^n}\right)$$
$$y_L(h) \equiv \operatorname{diag}\left(0, \sum_n y_\ell^{(n)} \frac{h^n}{v^n}\right) L$$

n=0 is for mass term, n=1 is for Yukawa coupling.

Fragmentation formalism

The decay width is written as a convolution Define $x = 2F/m_{eff}$

Define $z \equiv 2E_{\psi}/m_H$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}z}(H\to\psi(z)q\bar{q}) = 2C_q\otimes D_q + C_g\otimes D_g, C\otimes D \equiv \int_z^1 C(y)D(z/y)\frac{\mathrm{d}y}{y}$$

Hard coefficient

$$\begin{split} C_q(\mu^2, z) &= \Gamma(H \to q\bar{q}) \delta(1-z) \\ C_g(\mu^2, z) &= \frac{4\alpha_s}{3\pi} \Gamma(H \to q\bar{q}) \left[\frac{(z-1)^2 + 1}{z} \log\left(\frac{(1-z)z^2 m_H^2}{\mu^2}\right) - z \right] \end{split}$$

Fragmentation functions

$$\begin{split} D_{c \to J/\psi}^{(1)}(\mu^{2},z) &= \frac{128\alpha_{s}^{2}}{243m_{J/\psi}^{3}} \frac{z(1-z^{2})}{(2-z)^{6}} (16-32z+72z^{2}-32z^{3}+5z^{4}) \langle \mathscr{O}^{J/\psi}(^{3}S_{1}^{[1]}) \rangle \\ D_{q \to \psi}^{(8)}(\mu^{2},z) &= \frac{2\alpha_{s}^{2}}{9m_{\psi}^{3}} \left[\frac{(z-1)^{2}+1}{z} \log\left(\frac{\mu^{2}}{m_{\psi}^{2}(1-z)}\right) - z \right] \langle \mathscr{O}^{J/\psi}(^{3}S_{1}^{[8]}) \rangle \\ D_{g \to \psi}(\mu^{2},z) &= \frac{\pi\alpha_{s}}{3m_{\psi}^{3}} \delta(1-z) \langle \mathscr{O}^{J/\psi}(^{3}S_{1}^{[8]}) \rangle \end{split}$$