Impact of Advances in Detector Techniques on Higgs Measurements at Future Higgs Factories

Uli Einhaus, Bohdan Dudar, Jenny List Yasser Radkhorrami ICHEP Bologna 08.07.2022

CLUSTER OF EXCELLENCEQUANTUM UNIVERSE

Motivation

- 3 new algorithms developed to utilise the clean and precise detector data at e⁺e⁻ FHF
 → ILC, CLIC, FCC-ee, CEPC, etc.
 - ErrorFlow
 - Neutrino Correction
 - Strange Tagging
- They apply (mostly) to b, c and s-jets → Higgs decay modes or background (Z)
- New algorithms inform detector development and requirements

Motivation

- 3 new algorithms developed to utilise the clean and precise detector data at e⁺e⁻ FHF
 → ILC, CLIC, FCC-ee, CEPC, etc.
 - ErrorFlow
 - Neutrino Correction
 - Strange Tagging
- They apply (mostly) to b, c and s-jets → Higgs decay modes or background (Z)
- New algorithms inform detector development and requirements

Kinematic Fitting & ErrorFlow

- Re-assess each event (and e.g. reco inv. mass) by using
- 1. uncertainties on each individual outoing object, e.g. jet or isolated lepton
- 2. constraints unique to e+e- colliders:

$$\bullet \sum_{i=1}^{4} E_i = 500 \text{ GeV}$$

•
$$\sum_{i=1}^{4} p_{x,i} = 0 \text{ GeV}, \sum_{i=1}^{4} p_{y,i} = 0 \text{ GeV}, \sum_{i=1}^{4} p_{z,i} = 0 \text{ GeV}$$

- 3. constraints given by the specific analysis, e.g.:
 - $M(j_1, j_2) = M(j_3, j_4)$

[LC-TOOL-2009-001 https://bib-pubdb1.desy.de/record/88030]

^{*} modulo small opening angle of colliding beams

ErrorFlow

- Instead of using generic jet energy resolution: calculate energy uncertainty for each individual jet using error propagation from individual particles via covariance matrix
- Key: well-known uncertainties, particularly wrt. each other
- Different contributions (charged vs. neutral component) and coordinates (p_x, p_y, p_z, E) can be scaled individually to Gaussian pulls

ErrorFlow

- Instead of using generic jet energy resolution: calculate energy uncertainty for each indiviual jet using error propagation from individual particles via covariance matrix
- Key: well-known uncertainties, particularly wrt. each other
- Different contributions (charged vs. neutral component) and coordinates (p_x , p_y , p_z , E) can be scaled individually to Gaussian pulls

ErrorFlow: Detector Requirements

- Need excellent jet energy resolution with full uncertainties of each particle
 - → Particle Flow detector: low material budget tracker, high granularity calorimeter
- Need very good single particle res. in both tracker and calorimeter

Side note: this applies also at relatively low momenta, where the relative momentum resolution is dominated by multiple scattering!

[left, top: ILD IDR 2020 https://arxiv.org/abs/2003.01116]

[right: CLD, FCC-ee CDR 2019 https://doi.org/10.1140/epjst/e2019-900045-4]

Neutrino Correction in Semi-Leptonic Decays

- B- and D-mesons can decay semileptonically (SLD) including a neutrino,
 2/3 of bb-systems have at least 1 SLD
- Invisible energy significantly worsens reconstructed invariant mass
- Find b- (or c-) jet
- Reconstruct 4-momentum of neutrino by
 - finding its brother lepton (e/μ)
 - finding its mother (= B/D decay) vertex

https://arxiv.org/abs/2105.08480

Neutrino Correction in Semi-Leptonic Decays

- B- and D-mesons can decay semileptonically (SLD) including a neutrino,
 2/3 of bb-systems have at least 1 SLD
- Invisible energy significantly worsens reconstructed invariant mass
- Find b- (or c-) jet
- Reconstruct 4-momentum of neutrino by
 - finding its brother lepton (e/μ)
 - finding its mother (= B/D decay) vertex
- Works alone up to sign ambiguity, here the better of the two solutions is shown

Kinematic Fit + Neutrino Correction

- Neutrinos correction mitigates effect of SLD
- Together with kinematic fit allows for much narrower reconstructed Higgs peak

https://arxiv.org/abs/2105.08480

Kinematic Fit + Neutrino Correction

- Neutrinos correction mitigates effect of SLD
- Together with kinematic fit allows for much narrower reconstructed Higgs peak and separation from background from Z

https://arxiv.org/abs/2110.13731

Neutrinos Correction: Detector Requirements

- Find all visible energy: $\sim 4\pi$ hermeticity, high tracking efficiency at low momenta
- Flavour tagging and B/D-vertex reconstruction:
 - excellent vertex detector
 - hadron PID → high momentum kaons indicate
- Find electrons and muons: e,µ-ID
 - both already very good with low material tracker and dedicated ECal and muon chamber
 - additional PID for electrons via dedicated PID systems pushes efficiency
 - e-ID via bremsstrahlung reconstruction

Strange Tagging

- Measure Higgs to strange coupling
- Utilize new strange tagger using K±, K⁰s, Λ⁰
 - → allows to cut background by factor 3
- Results in upper limit on κ_s < 7.1

https://arxiv.org/abs/2203.07535

Strange Tagging

- Measure Higgs to strange coupling
- Utilize new strange tagger using K±, K⁰s, Λ⁰
 - → allows to cut background by factor 3
- Results in upper limit on κ_s < 7.1

https://arxiv.org/abs/2203.07535

Strange Tagging: Detector Requirements

- Excellent vertexing for b/c veto
- Identify K[±], K⁰s, Λ⁰
 - → kaon / charged hadron PID
 - → V0 finding → benefits from continuous tracker

TPC: dE/dx (dN/dx?)

ECal: TOF

[ILD IDR 2020 https://arxiv.org/abs/2003.01116]

DC: dE/dx or dN/dx

[IDEA, FCC-ee CDR 2019 https://doi.org/10.1140/epjst/e2019-900045-4]

https://arxiv.org/abs/2203.07535

Summary

 In order to utilise precious collisions and precise detectors, new methds and algorithms have been and are being developed and inform detector requirements

Hadronic W and Z decays

 Side note: strange tagging can also be used to tag hadronic decays of W and Z in order to measure their coupling to quarks → test SM, bread & butter at LEP

 $W \rightarrow c+s \ vs. \ u+d \ separation \ via \ BDT improves with better dE/dx resolution$

Measurement of $Z \rightarrow d/s$ via simultaneous fit of hadronisation fractions

https://ediss.sub.uni-hamburg.de/handle/ediss/9634

TPC dE/dx: Benefits of High Granularity

- Increasing current pad-based granularity by 1 order gives ca. 15% better PID
- Increasing by 2 orders enables cluster counting and gives 30% better PID

https://arxiv.org/abs/2205.12160

