

Prospects for Single- and Di-Higgs Measurements at the FIL-UFIC with ANIA

Tilin Varol Mete, Academia Sinica

ICHEP 2022, Bologna, Italy 6-13 July 2022

On behalf of the ATLAS experiment

High Luminosity LHC (HL-LHC)

- HL-LHC will provide **20 times** the dataset delivered so far!
 - But a more challenging environment, with up to 200 additional interactions per bunch crossing, up to an order of magnitude larger radiation dose
- Upgrades to the LHC and detectors needed for efficient data taking and event reconstruction at increased luminosity, and in a challenging environment

High Luminosity LHC web page

2

ATLAS Upgrades for HL-LHC

New all-silicon inner tracker (ITK) with coverage up to $|\eta|=4$

New muon chambers in barrel inner region

New High Granularity Timing Detector (HGTD) in forward region

New TDAQ off-detector electronics

- L0 hardware trigger
 - with an output rate of 1 MHz
- Event Filter

Tile calorimeters

LAr hadronic end-cap and

forward calorimeters

with an output rate of 10 kHz

Transition radiation tracker

LAr electromagnetic calorimeters

General overview of ATLAS Upgrades projects for HL-LHC

ATLAS HL-LHC Projection Strategies

CERN Yellow Report from European Strategy for Particle Physics (2019): • <u>Report on the Physics at the HL-LHC and Perspectives for the HE-LHC</u>

Snowmass White Paper (2022):

• <u>Physics with the Phase-2 ATLAS and CMS Detectors</u>

Two main strategies for ATLAS projections:

- Extrapolations based on Run-2 results
 - Benefit from well-studied systematics models developed for the Run-2 analyses
 - A baseline scenario: *"YR18 Systematic Uncertainties"*

at $\sqrt{s} = 14$ TeV is considered

• Parametric simulations based on detailed simulations of the upgraded detectors under HL-LHC conditions

For the extrapolations, a HL-LHC scenario corresponding to a dataset of 3000 fb^{-1} of pp collisions

Higgs Boson Mass and Width ATL-PHYS-PUB-2018-054

Higgs boson mass measurement projection

- Based on the $H \rightarrow Z Z^* \rightarrow 4\ell$ channel results
 - The least sensitive to systematic uncertaintie

Higgs boson width projections

- Based on Run-1 Analysis
- Only $H \rightarrow Z Z^* \rightarrow 4\ell$ final state used
- Only theoretical uncertainties considered, systematics uncertainties are negligible
- The expected precision on $\Gamma_{\rm H}$ at 3000 fb⁻¹
 - 4.2 MeV + 1.5 MeV 2.1 MeV

5		$\Delta_{\rm tot}~({\rm MeV})$	Δ_{stat} (MeV)	Δ
	Current Detector	52	39	
	μ momentum resolution improvement by 30% or similar	47	30	
μ	μ momentum resolution/scale improvement of 30% / 50%	38	30	
	μ momentum resolution/scale improvement 30% / 80%	33	30	

Higgs Boson Spin/CP

- Measurement of the *CP* quantum number of the Higgs boson coupling to τ leptons
 - Based on estimates from the measurement of the $H \rightarrow \tau \tau$ cross section with 36.1 fb⁻¹ of $\sqrt{s}=13$ TeV data
- Contributions from *CP*-violating interactions between the Higgs boson and τ leptons are described by a single mixing angle parameter ϕ_{τ}
 - $\phi_{\tau} = 0$ for the SM (pure scalar)
 - $\phi_{\tau} = \pi/2$ for maximally CP-odd coupling (pure pseudoscalar)
- Only $\tau^{\pm} \rightarrow \rho^{\pm} v_{\tau} \rightarrow \pi^{\pm} \pi^{0} v_{\tau}$ decays considered
 - The direction of the pions retain a strong correlations to the τ spin direction

ATL-PHYS-PUB-2019-008

The pseudoscalar hypothesis excluded at 95% CL even with 1.5x nominal π^{o} resolution

A statistical precision of approximately ±18° and ±33° assuming the nominal or $2 \times \pi^{0}$ resolution at 68% CL

- 0.001
 - All the extrapolated single-channel results are combined to compute the cross sections per production mode and the branching ratios
 - ggF, VBF, VH, ttH+tH production modes are studied
 - Decays of the Higgs boson to γγ, Z Z, WW, ττ, bb considered

Higgs Boson Coupling Modifiers

- Results are interpreted for Higgs boson coupling modifiers κ
- No BSM contribution to the Higgs boson total width

YR18 Systematics

Particle mass [GeV]

ATL-PHYS-PUB-2018-054

on total width

 $\sigma_{i} \times B(H \to f) = \frac{\sigma_{i} \times \Gamma_{f}}{\Gamma_{H}}$ $= \frac{\kappa_{i}^{2} \kappa_{f}^{2}}{\kappa_{H}^{2}} \sigma_{i}^{SM} \times B^{SM}(H \to f)$ $\kappa_{H}^{2} = \frac{\sum_{f} \kappa_{f}^{2} B^{SM}(H \to f)}{1 - B_{BSM}}$

YR18 Systematics

		1	
	Total ⊢•-	Stat.	Syst.
	Total	Stat S	Syst
	± 0.022	$2(\pm 0.008 \pm 0)$	0.021)
	± 0.018	$(\pm 0.009 \pm 0)$	0.015)
	± 0.041	$(\pm 0.011 \pm 0.011)$.040)
	± 0.043	(± 0.016 ± 0	0.041)
1	± 0.028	$(\pm 0.011 \pm 0)$.026)
-	± 0.031	$(\pm 0.010 \pm 0)$	0.029)
l	± 0.024	$(\pm 0.009 \pm 0)$	0.022)
	± 0.071	$(\pm 0.064 \pm 0)$	0.028)
	± 0.123	(± 0.102 ± 0	0.069)
_ 1 _ 1	1.2 1	.4 1.6	1.8 2
	8	Parar	meter value

Run 2 Systematics

u						
3						ΤΙ
	ATLAS Prelimina	ary	Total ⊢•	н (Stat.	S
	Projection from F	lun 2 data		•		-
	<i>√s</i> = 14 TeV, 300	00 fb ⁻¹	Tot	al	Stat	Syst
	^К W		± 0.03	32 (±	0.008 ±	0.030
	^к z		± 0.02	26 (±	0.009 ±	0.025
	к _t		± 0.06	63 (±	0.011±(0.062
	^К ь		± 0.06	62 (±	0.016 ±	0.060
	$\kappa_{ au}$		± 0.03	87 (±	0.011±(0.036
	^К g		± 0.04	l2(±	0.010 ±	0.041
	κ_{γ}		± 0.03	37 (±	0.009 ±	0.036
	κ_{μ}		± 0.07	77 (±	0.064 ±	0.043
	κ _{zγ}		± 0.12	27 (±	0.102 ±	0.075
0.001	0.6 0.8	8 1	1.2	1.4	1.6	1
					Para	mete

- The inclusive $pp \rightarrow H \rightarrow \tau^+ \tau^- cross$ -section measurement is projected to have a precision for [%]
- The projected precisions are 11%, 7%, 14%, 24% for ggF, VBF, VH, and ttH production mode measurements, respectively

• $\sigma(pp \rightarrow H \rightarrow \tau^+ \tau^-)_{exp} / \sigma(pp \rightarrow H \rightarrow \tau^+ \tau^-)_{SM} = 1.00 \pm 0.05 = 1.00 \pm 0.01 \text{ (stat.)} \pm 0.04 \text{ (sig. th.)} \pm 0.02 \text{ (syst)}$

VH, H→bb and VH, H→cc

- The extrapolation from the Run-2 VH, H \rightarrow bb and VH, H \rightarrow cc analyses
- Performed a fit to the signal strengths as well as to the coupling modifiers

→bb and VH, H→cc analyses well as to the coupling modifiers

The expected best fit signal strengths at HL-LHC

- $\mu_{VH}(bb) = 1.00 \pm 0.06$
- $\mu_{VH}(cc) = 1.00 \pm 3.20$

The expected constraint of |Kc/Kb|

• $|K_c/K_b| < 2.7 \text{ at } 95\% \text{ CL}$

- One of the major goals of the HL-LHC is to measure the Higgs boson self-coupling (λ_{HHH})
- Higgs self-coupling is accessible at tree level in HH production and at loop level in single-H production
- SM HH production cross-section ($\sigma_{\rm HH}$) is ~1000 times smaller than $\sigma_{\rm H}$
- Various **BSM** theories predict enhancements in the HH production rate

The projections for the non-resonant HH production in bbyy and bbtt final states updated

- Results contain substantial improvements (in analysis methods, τ reconstruction identification, btagging) with respect to the previous projections
- A statistical combination of these updated projections performed
- Effects of κ_{λ} on VBF processes were also introduced in the updated results

ATL-PHYS-PUB-2018-053 combination results updated with more realistic b-tagging performance in ATL-PHYS-PUB-2020-005

Channel	Statistical-only	Statistical + Systematic			Significa	ance $[\sigma]$	Combined si
$HH \rightarrow b\bar{b}b\bar{b}$	1.2	0.5	Uncertainty scenario	$b\overline{b}\gamma\gamma$	$b\bar{b}\tau^+\tau^-$	Combination	strength precis
$HH \rightarrow b \bar{b} \tau^+ \tau^-$	2.3	2.0	No syst. unc.	2.3	4.0	4.6	-23/+2
$HH \rightarrow h\bar{h}\gamma\gamma$	2 1	2.0	Baseline	2.2	2.8	3.2	-31/+3
		2.0	Theoretical unc. halved	1.1	1.7	2.0	-49/+5
Combined	3.3	2.9	Run 2 syst. unc.	1.1	1.5	1.7	-57/+6

Previous results: Combination of bbbb, bbγγ, bbττ

ATL-PHYS-PUB-2022-005

Updated results: Combination of bbyy, bbtt

The projections for the non-resonant HH production in bbyy and bbtt final states updated

- Results contain substantial improvements (in analysis methods, τ reconstruction identification, btagging) with respect to the previous projections
- A statistical combination of these updated projections performed
- Effects of κ_{λ} on VBF processes were also introduced in the updated results

Likelihood scan 1 σ CI on κ_{λ}

- Baseline: [0.5,1.6]
 - Previously: [0.25,1.9]
- Without systematics: [0.6,1.5]
 - Previously: [0.4,1.7]

Conclusion

- Impressive progress since the discovery of the Higgs boson
- Major upgrades to ATLAS for the HL-LHC are foreseen
- The HL-LHC projections are performed for the single- and di-Higgs measurements with ATLAS
 - Mostly extrapolated from the Run-2 results
 - Based on predictions on the performance of the upgraded ATLAS detector
- Some of the projections already updated using the latest Run-2 results
- Higgs self-couplings could be measured with expected significance of 3.2σ (baseline scenario)

Stay tuned for more data, more results...

BACK UP

YR18 Systematic Uncertainties

- Most of the experimental uncertainties scaled down with $\sqrt{\mathcal{L}_{int}}$
- Statistical uncertainty reduced by a factor of $1/\sqrt{(\mathcal{L}_{int}(HL-LHC)/\mathcal{L}_{int}(reference Run2))}$
- Uncertainties related to the limited number of simulated events are neglected
- Theoretical uncertainties are halved
- 1% luminosity uncertainty
- Systematics driven by intrinsic detector limitations are left unchanged • Uncertainties on methods left unchanged

H→µµ

- Based on the analysis using 79.8 fb⁻¹ of data collected at $\sqrt{s} = 13$ TeV
- Limited by the statistical uncertainty
- Expected precision of the measurement of the signal strength 13% for the baseline scenario

H→Zγ

- Based on 36.1 fb⁻¹ data collected at $\sqrt{s} = 13$ TeV
- All the experimental and systematic uncertainties are the same as before
- The expected significance of the SM Higgs boson is 4.9 σ with 3000 fb⁻¹
- The precision for the cross section times branching ratio measurement is expected to be 0.23 times the SM prediction

- Extrapolated from the Run 2 results using datasets of 36 fb⁻¹ and 80 fb⁻¹ collected at \sqrt{s} =13 TeV
- All the extrapolated single-channel results are combined to compute the cross sections per production mode and the branching ratios
- ggF, VBF, VH, ttH and tH production modes are studied
- Decays of the Higgs boson to $\gamma\gamma$, Z Z, WW, $\tau\tau$, bb considered

H->ττ Cross-Section

Based on the H→ττ cross-section measurement

• Using the full Run-2 dataset, consisting of 139 fb⁻¹ of pp collisions at $\sqrt{s}=13$ TeV

Measurements presented within the Simplified Template Cross-Section (STXS) framework

- Measurements per production mode, in different region of phase space
- Minimize the dependence on theory
- Maximize the experimental sensitivity
- Isolate possible BSM effects

ATL-PHYS-PUB-2022-003

• lep • nad
$ au_{ m e} au_{ m \mu}$

H->ττ Cross-Section

Source of uncertainty	Impact on $\Delta \sigma / \sigma (pp \rightarrow H \rightarrow \tau \tau) [\%]$		
	Run 2	HL-LHC	HL-LHC*
Theoretical uncertainty on the signal	8.5	3.8	3.7
Jet and $E_{\rm T}^{\rm miss}$	4.2	1.7	1.7
Background sample size	3.7	1.3	0.9
Hadronic τ decays	2.1	0.9	0.9
Misidentified $ au$	2.0	0.7	0.7
Luminosity	1.8	0.7	0.7
Theoretical uncertainty in Z + jets processes	1.2	0.7	0.7
Theoretical uncertainty in Top processes	1.1	0.3	0.3
Flavour tagging	0.5	0.2	0.3
Electrons and muons	0.4	0.3	0.3
Total systematic uncertainty	11.4	4.4	4.3
Data sample size	6.7	1.3	1.3
Total	13.2	4.6	4.5

Table 3: Summary of the different sources of uncertainty in decreasing order of their impact on $\sigma(pp \rightarrow H \rightarrow \tau\tau)$ for the Run 2 analysis and the HL-LHC extrapolation. A scenario in which the Monte Carlo background sample size is sufficiently large that its contribution as a systematic uncertaity is negligible is also included and labelled as HL-LHC*. The expected fractional impacts of the various sources of uncertainty, computed by the fit, are given, relative to the $\sigma(pp \rightarrow H \rightarrow \tau\tau)$ value. Experimental uncertainties in reconstructed objects combine efficiency and energy/momentum scale and resolution uncertainties. Background sample size includes the bin-by-bin statistical uncertainties in the simulated backgrounds as well as statistical uncertainties in misidentified τ backgrounds, which are estimated using data.

Theoretical uncertainties include

- Uncertainties on the cross-sections of the processes of interest,
- on the value of $\alpha_{\rm S}$,
- on the factorization, renormalization and resummation scales,
- on the parton distribution function and shower models,
- on the chosen merging scheme,
- and on the description of the initial and final state radiation

Uncertainty scenario	Likelihood scan 1 σ CI	Likelihood scan 2σ
No syst. unc.	[0.6, 1.5]	[0.3, 2.1]
Baseline	[0.5, 1.6]	[0.0, 2.7]
Theoretical unc. halved	[0.2, 2.2]	[-0.4, 5.6]
Run 2 syst. unc.	[0.1, 2.5]	[-0.7, 5.7]

	95% CL upper limit			
Uncertainty scenario	$bar{b}\gamma\gamma$	$b\bar{b}\tau^{+}\tau^{-}$	Combination	
No syst. unc.	0.86	0.49	0.42	
Baseline	0.93	0.71	0.58	
Theoretical unc. halved	1.7	1.07	0.93	
Run 2 syst. unc.	1.9	1.37	1.16	

- The dominant source of uncertainties on the combined projection result:
 - Theoretical uncertainty on the ggF, VBF, WH production modes due to the imperfect modelling of additional heavy flavour jet radiation in these processes
 - Theoretical uncertainty on the HH cross-section

In the future, the reduction of systematic uncertainties from the theory community will represent an essential ingredient to measure HH production at the HL-LHC

•₽